

SRI SHAKTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(AN AUTONOMOUS INSTITUTE)

REGULATIONS 2021- CURRICULUM AND SYLLABUS

M.E - COMPUTER SCIENCE AND ENGINEERING

SEMESTER – I

Sem	Course code	Course Title	Category	Contact Periods	L	т	Ρ	С
Ι	21MS102	Applied Mathematics For Computer Science Engineers	BS	4	3	1	0	4
I	21CP101	Distributed Operating System	PC	5	3	0	2	4
Ι	21CP113	Distributed Operating System Laboratory	Distributed Operating System Laboratory PC 2 0		0	0	2	1
I	21CP102	Network Management	PC	5	3	0	2	4
I	21CP114	Network Management Laboratory	PC	2	0	0	2	1
Ι	21CP103	Advanced Data Structures and Algorithms	PC	5	3	0	2	4
Ι	21CP115	Advanced Data Structures and Algorithms Laboratory	РС	2	0	0	2	1
I	21CP104	Agile Software Engineering	PC	5	3	0	2	4
I	21CP116	Agile Software Engineering Laboratory	РС	2	0	0	2	1
I	21CP111	Project I	EEC	4	2	0	2	3
I	21CP112	Technical Seminar I	EEC	2	0	0	2	1
I	21AC101	Research Paper Writing	HS	2	0	0	0	2
	Total Ci	redits (Semester)						24

SEMESTER - II

Sem	Course code	Course Title	Category	Contact Periods	L	т	Ρ	С
П	21CP201	Internet of Things	РС	5	3	0	2	4
П	21CP202	Machine Learning	PC	5	3	0	2	4
П	21CP203	Database Technology	PC	5	3	0	2	4
П	21CP201	Research Methodology	PC	3	3	0	0	3
II	21PCP02	Software Quality Assurance and Testing (PE1)	PE	4	2	0	2	3
П	21CP211	Project II	EEC	4	2	0	2	3
П	21CP212	Technical Seminar II	EEC	2	0	0	2	1
П	21CP213	Internet of Things Laboratory	PC	2	0	0	2	1
II	21CP214	Machine Learning Laboratory	РС	2	0	0	2	1
П	21CP215	Database Technology Laboratory	PC	2	0	0	2	1
П	21AC201	Disaster Management	HS	2	0	0	0	0
	Total	Credits (Semester)						22

SEMESTER - III

Sem	Course code	Course Title	Category	Contact Periods	L	т	Ρ	с
111	21PCP06	Advanced Soft Computing(PE2)	PE	4	2	0	2	3
	21PCP11	Software Defined Networks(PE3)	PE	4	2	0	2	3
111	21PCP16	Information Security and Cyber Forensics(PE4)	PE	4	2	0	2	3
	21CP311	Dissertation-I	EEC	12	0	0	12	6
	Total	Credits (Semester)						15

 $\textbf{SEMESTER} - \mathsf{IV}$

Sem	Course code	Course Title	Category	Contact Periods	L	т	Ρ	С
IV	21CP411	Dissertation-II	EEC	36	0	0	24	12
	То	tal Credits(Semester)						12
		Total Credits)						73

	PROFESSIONAL ELECTIVES										
S.No	Course code	Course Title	Cate gory	Contact Periods	L	т	Ρ	с			
		ELECTIVE 1			•						
1	21PCP01	Cloud Services and Virtualization	PE	4	2	0	2	3			
2	21PCP02	Software Quality Assurance and Testing	PE	4	2	0	2	3			
3	21PVD16	Digital Image Processing	PE	4	2	0	2	3			
4	21PCP04	Artificial Intelligence	PE	4	2	0	2	3			
		ELECTIVE 2		11							
1	21PCP05	Video Analytics	PE	4	2	0	2	3			
2	21PCP06	Advanced Soft Computing	PE	4	2	0	2	3			
3	21PCP07	Semantic Web Technology	PE	4	2	0	2	3			
4	21PCP08	Parallel Computer Architecture	PE	4	2	0	2	3			
	L	ELECTIVE 3		1 1							
1	21PCP09	Advances in Storage Area Networks	PE	4	2	0	2	3			
2	21PCP10	Natural Language Processing	PE	4	2	0	2	3			
3	21PCP11	Software Defined Networks	PE	4	2	0	2	3			
4	21PCP12	Embedded Computing Systems	PE	4	2	0	2	3			
	1	ELECTIVE 4									
1	21PCP13	Applied Graph Theory	PE	4	2	0	2	3			
2	21PCP14	Software Architecture and Design Patterns	PE	4	2	0	2	3			
3	21PCP15	NoSQL Database	PE 4 2 0 2					3			
4	21PCP16	Information Security And Cyber Forensics	PC	4	2	0	2	3			

21MS10	2	APPLIED MATHEN	MATICS FOR COMPUTER S	SCIENCE	L	T	P	C
COURSE	OBIECTIVE	<u>ج</u>	ENGINEERS		3	T	U	4
This cour	se is design	ed to enrich the knowled	lge in various advanced m	athematical te	chnic		ich as	Logic
and Proc	ofs. Graph ⁻	Theory, Two Dimensiona	al Random Variables. Tes	ting of hypoth	esis	and N	Aultiva	ariate
analysis f	for solving t	the applications of comp	Iter and information scie	nces	co.o,		- circi v c	indee
PRF-RFO								
• F	Basic concer	nts of Logics						
• E	Basic concer	ots of Graphs						
• E	Basic concer	ots of Random Variables	& Statistics					
• E	Basic conce	ots of Matrices						
THEORY		NT CONTENTS:						
UNIT I	L	OGIC AND PROOFS						12
Propositi Rules of	onal logic – inference -	Propositional equivalen Introduction to proofs –	ces - Predicates and quan Proof methods and strate	tifiers – Nesteo egy.	d qua	ntifier	·s —	
UNIT II	Ģ	RAPH THEORY						12
Graph Iso colouring	omorphism g and chrom	– Planar graphs – Hamili natic polynomials.	on paths and Cycles – Tra	avelling Salesm	an Pr	oblem	ı - Gra	ph
UNIT III	Т	WO DIMENSIONAL RAN	DOM VARIABLES					12
Joint Dis Covarian	tribution - ce – Correla	Discrete and continuo ation – Regression.	us distributions - Margi	nal and Cond	itiona	al Dist	ributi	ons -
UNIT IV	Т	ESTING OF HYPOTHESIS						12
Sampling	, distributio	ns – Type I and Type II er	rors – Small and large sar	nples – Tests b	ased	on t, (Chi	
square a	nd F distrib	utions for testing of mea	n, variance – Tests for inc	lependence of	attril	outes a	and	
goodnes	s of fit.							
UNIT V	Ν	ULTIVARIATE ANALYSIS	6					12
Random its prope standard	vectors and rties – Prind ized variabl	d matrices – Mean vector cipal components – Pop les.	s and covariance matrice ulation principal compone	s – Multivariato ents – Principal	e nor com	mal de ponen	ensity ts fror	and n
Theory:5	0	Tutorial: 10	Practical: 0			Tota	al:60 H	lours
COURSE	OUTCOME	S:						
At the en	id of the co	urse students should be	able to,					
CO1 :	Apply the	concepts needed to test	the logic of a program.					
CO2 :	Solve the	various problems involvi	ng graphs.					
CO3 :	Apply the concepts of Correlation and Regression							
CO4 :	Identify th	ne statistical tests in data	Analysis					

CO5 :	Perform explora	tory analysis c	of multivariate	data, such as m	nultivariate no	ormal density,							
	Calculating desc	alculating descriptive statistics, testing for multivariate normality.											
							٦						
	CO/	PO MAPPING	i(S/M/W indica	ates strength o	of correlation)								
		3	-Strong, 2-Mod	derate, 1-Fair									
	605		PROGRA	MME OUTCOM	IES (POs)								
	COS	PO1	PO2	PO3	PO4	PO5	7						
	CO1	3	2	2	1	2							
	CO2	3	2	2	1	2							
	CO3	3	2	2	1	2							
	CO4	3	2	2	1	2							
	CO5	3	2	2	1	2							
REFEREN	ICE BOOKS:												
R1:	Kenneth H Roser 2013.	n, —Discrete N	Mathematics ar	nd its Application	ons∥, Tata Mc	Graw Hill, Ne	w Delhi,						
R2 :	Grimaldi R.P. "Di Wesley, 1994.	iscrete and Co	mbinatorial Ma	athematics: An	Applied Intro	duction", Ac	ldison						
R3 :	Johnson R.A, Mil Education,Delhi,	Johnson R.A, Miller & Freund's Probability and Statistics for Engineers , Pearson Education, Delhi, 2009 .											
R4 :	T.Veerarajan: "P Graw Hill Co.,202	Probability, Sta 16.	atistics and Ran	idom Process",	3rd Edition,Ta	ata Mc-							
R5 :	Richard A. Johns Edition, Pearson	on and Dean \ Education, As	W. Wichern, — iia, 2002.	Applied Multiv	ariate Statisti	cal Analysis∥,	5th						

21CP	101	DISTRIBUTED OPERATING SYSTEM	L	T	Р	C
COURSE	OBIECTIV	ES.	3	0	2	4
COURSE	OBJECHV	L3.				
• T	o examin	e the fundamental principles of distributed operating systems				
• T	o provide	hands-on experiences in developing suitable algorithms for dist	ribute	d syste	em	
• T	o empha	sis on OS resource security and protection and database operation	ng syst	tem		
	UISITES:					
THEORY		ENT CONTENTS:				
UNITI		DISTRIBUTED OPERATING SYSTEMS				9
Overview	: Svnchro	pnization Mechanisms-Architectures of Distributed Systems-T	heore	tical F	ounda	ations.
Distribute Based A Agreeme problem.	ed Mutua Igorithm- nt Protoc	I Exclusion: Preliminaries-A Simple solution to distributed mutu Lamport's Algorithm-Ricart Agrawala algorithm Distributed ols: System Model- Classification of Agreement Problem-solution	ial exc d Dea to byz	lusion adlock antine	-Non- dete agree	Token ction- ement
UNIT II		DISTRIBUTED RESOURCE MANAGEMENT				9
memory: Schedulir algorithm	Algorith ng: Issues ns.	ms for implementing DSM-Memory Coherence- Coherences in Load distribution-Components of load distributing algo	prot rithm	cols. Load	Distri distril	buted outing
UNIT III		FAULT TOLERANCE				9
Failure R	ecovery	and Fault Tolerance-Recovery: Classification of Failures-Backw	vard a	nd fo	rward	error
recovery	-recovery	in concurrent systems-Check pointing. Fault Tolerance: Commi	t prot	ocols-ı	nonblo	ocking
commit p	protocols-	voting protocols-dynamic voting protocols- Failure resilient proc	esses.			
UNIT IV		PROTECTION AND SECURITY				9
Protectio Impleme Multipro	on and Sec ntation o cessor Sys	urity-Resource Security and protection: Introduction-Preliminarie f Access Matrix-safety in Access matrix model. Multiprocess stem Architectures.	es-Acc sor O	ess Ma peratir	atrix N ng sys	1odel- tems-
UNIT V		DATABASE OPERATING SYSTEMS				9
Introduct Control A	tion to [Algorithms	Database Operating systems-Concurrency Control-Theoretical 5 – Basic synchronization primitives-lock based algorithms- Times	Aspe stamp	ects- C based	Concui algori	rrency ithms.
COURSE	оитсом	ES:				
At the en	d of the c	ourse students should be able to,				
CO1 :	Underst	and the basic foundation in the design of advanced operating sy	stems			
CO2 :	Devise a scheduli	algorithms for distributed file systems, distributed shared m ng.	iemor	y and	distri	buted
CO3 :	Assess t toleranc	he basis of the design of advanced operating systems such as fare	ailure	recove	ry and	d fault
CO4 :	Find the	solutions for the problems encountered in the design of advance	ed op	erating	g syste	ems

CO5 : Analyse algorithms for database operating systems

	CO/PO M	IAPPING(S/I 3-Stro	M/W indicate ong. 2-Moder	es strength of correla rate. 1-Fair	tion)				
		PRC		UTCOMES (POs)					
COs –	PO1	PO2	PO3	PO4	PO5				
CO1	3		2						
CO2	2		2						
CO3	2	2	2						
CO4		3	2	2	2				
CO5				2	2				
REFEREN	CE BOOKS:								
Mukesh Singhal, Niranjan G.Shivaratri, Advanced Concepts in Operating Systems, "DistributedR1 :Database, and Multiprocessor Operating Systems", Tata McGraw-Hill, 2001. ISBN: 0-07- 047268- 8.									
R2 :	R2: Pradeep K. Sinha,"Distributed Operating Systems Concepts and Design", Prentice-Hall of India, 2005, ISBN: 81-203-1380-1								
R3 :	Mary Gorm Technology ²	an, Todd Si ', 2001. ISBN	tubbs, "Intro 1: 061905944	duction to Operating 3.	g Systems: Ad	vanced Course, Course			
R4 :	Abraham Sil and Sons, Se	berschatz, P eventh Editio	Peter Baer Gal on, 2006. ISBN	vin, Greg Gagne,"Op I: 9812-53-176-9	erating System	Principles", John Wiley			
LAB CON	IPONENT CO	NTENTS:							
1.	Design and (Assume sui	Develop a table application	UNIX/LINUX sation).	shell program that s	hould support	at least 10 commands			
2.	Design a fro executed.	ont-end appl	lication upon	click of a button cor	responding sh	ell command should be			
3.	Design and o	develop a pr	ogram to imp	lement lazy buddy sy	/stem algorith	n.			
4.	Write a mul barbershop from a single	ti-class mult that has a fi e customer o	tithreaded pr nite number (class; each ba	ogram that simulate of chairs in the waitir rber is instantiated fr	s multiple slee ng room. Each rom a single Ba	ping barbers, all in one customer is instantiated rber class.			
5.	Create two shmget, sigr	process and nal, fork etc.	demonstrate to simulate t	the usage of Shared he working environm	segment by th ent of the pro	ne above processes (use gram).			
6.	Design and o infector and	develop a pr macro.	ogram to rea	lize the virus classific	ation, such as	boot sector infector, file			
Theory:4	5	Tutorial:0		Practical:30		Total:75 Hours			

21CP102	NETWORK MANAGEMENT	L 2	T	P	C				
COURSE OBJECTIN	/ES:	5	U	2	4				
Define Show Explai Utilize Infer e Extend PRE-REQUISITES: NIL THEORY COMPON	e parallel and distributed databases and its applications. applications of Object Oriented database n basic concepts, principles of intelligent databases. the advanced topics of data warehousing and mining. emerging and advanced data models d knowledge in research topics of databases.								
UNIT I	FOUNDATIONS OF NETWORKING				9				
Communication Networks – Network Elements – Switched Networks and Shared media Networks – Probabilistic Model and Deterministic Model – Datagrams and Virtual Circuits – Multiplexing – Switching - Error and Flow Control – Congestion Control – Layered Architecture – Network Externalities – Service Integration – Modern Applications									
UNIT II	QUALITY OF SERVICE				9				
Shaping algorithm Significance of UD	ns – End to End solutions – Laissez Faire Approach – Possible P in inelastic traffic	e impro	ovemen	its in	TCP –				
UNIT III	HIGH PERFORMANCE NETWORKS				9				
Integrated Service Behavior – Admis RTP/RTCP	s Architecture – Components and Services – Differentiated Ser sion Control – MPLS Networks – Principles and Mechanisms -	vices N - Label	etwork Stackir	s – Pe ng – R	r Hop SVP –				
UNIT IV	HIGH SPEED NETWORKS				9				
Optical links – WE Networks – B-ISD Management and	Optical links – WDM systems – Optical Cross Connects – Optical paths and Networks – Principles of ATM Networks – B-ISDN/ATM REFERENCE BOOKS Model – ATM Header Structure – ATM Adaptation Layer – Management and Control – Service Categories and Traffic descriptors in ATM networks								
					9				
ICMP the Forerun – CMIP – SNMP Co and SNMPv3 – Re	ner – Monitoring and Control – Network Management Systems – ommunication Model – SNMP MIB Group – Functional Model – I mote monitoring – RMON SMI and MIB	- Abstra Major c	act Synt hanges	ax Not in SN	ation MPv2				
COURSE OUTCOM	IES:								

At the end o	of the course s	tudents should	d be able to	C								
CO1 :	Outline the	tline the various protocols and models in networks										
CO2 :	Analyze the	operations and	d features	network protocols	s in provi	ding QoS.						
CO3 :	Interpret the support com	e operation of munications.	high perfo	ormance and high	speed ne	tworks and explain how they						
CO4 :	Develop and	Analyse simpl	e compute	er networks.								
CO5 :	Identify and	solve network	-engineeri	ng problem.								
	CO/PO ΜΑΡΡΙ	NG (1/2/3 ind 3-Strong, 2-N	icates stre loderate, :	ngth of correlatio 1-Fair	n)							
		PROGRA	MME OUT	COMES (POs)								
COs	PO1	PO2	PO3	PO4	PO5							
CO1	3		2									
CO2	2		2									
CO3	2	2	2									
CO4		3	2	2	2							
CO5				2	2							
REFERENCE	BOOKS:											
R1 :	Mahbub Ha 2004.	ssan and Raj .	Jain, 'High	Performance TCF	P/IP Netv	working', Pearson Education,						
R2 :	Larry L Pete Edition, Mor	erson and Bru gan Kaufman I	ce S Davie Publishers,	e, 'Computer Net 2007.	works: A	A Systems Approach', Fourth						
R3 :	Jean Warlan 2002	d and PravinVa	areya, 'Higl	h Performance Net	tworks',	Morgan Kauffman Publishers,						
R4 :	William Stal Pearson Edu	lings, 'High Sp cation, 2002.	eed Netwo	orks: Performance	e and Qu	ality of Service', 2nd Edition,						
R5 :	Mani Subrai 2000	maniam, 'Netv	vork Mana	agement: Principle	es and P	ractices', Pearson Education,						
R6 :	Kasera and S	eth, 'ATM Net	works: Co	ncepts and Protoc	ols', Tata	McGraw Hill, 2002.						
LAB COMPC	DNENT CONTE	NTS:										
Implementa	tion of											
1.	Congestion	Control										
2.	Traffic Shap	oing algorithms	5									
3.	RSVP											
4.	Case study	on ATM netwo	orks									
5.	Comparison	n study on SNN	/IP,SNMPv	2 and SNMPv3								
Theory:45		Tutorial:0		Practical:30		Total:75 Hours						

21CP11	.5	ADVANCED DATA STRUCTURES AND ALGORITHMS	L २	T	P 2	<u>С</u> 4				
COURSE OF	BJECTI	VES:		U	-					
 To extend the students' knowledge of algorithms and data structures, and to enhance their expertise in algorithmic analysis and algorithm design techniques. Expected to learn a variety of useful algorithms and techniques and extrapolate from them in order to then apply those algorithms and techniques to solve problems 										
PRE-REQUI	SITES:									
NIL										
THEORY CO	OMPO	NENT CONTENTS:								
UNII		FUNDAMENTALS				9				
Mathematic Properties of Introductio Space Trade	Mathematical Proof Techniques: Induction, proof by contradiction-direct proofs - Asymptotic Notations – Properties of Big-oh Notation –Conditional Asymptotic Notation – Algorithm Analysis – Amortized Analysis. Introduction to NP-Completeness/NP-Hard – Recurrence Equations – Solving Recurrence Equations – Time- Space Tradeoff.									
UNIT II		HEAP STRUCTURES				9				
Min/Max h Heaps.	eaps –	- Deaps – Leftist Heaps – Binomial Heaps – Fibonacci Heaps – Sk	kew He	eaps – L	.azy Bii	nomial				
UNIT III	:	SEARCH STRUCTURES				9				
Binary Sear	rch Tre	es – AVL Trees – Red-Black trees – Multi-way Search Trees –B-T	rees –	Splay 1	Frees –	Tries.				
UNIT IV	(GEOMETRIC ALGORITHMS				9				
Segment Tr Computing	rees – the O	1-Dimensional Range Searching - k-d Trees – Line Segment Int verlay of Two Subdivisions - Range Trees - Voronoi Diagram.	ersect	ion - C	onvex	Hulls -				
UNIT V		PARALLEL ALGORITHMS				9				
Flynn's Clas on Mesh a Multiplicati	ssificat and Bu ion – D	ions – List Ranking – Prefix computation – Array Max – Sorting utterfly – Prefix sum on Mesh and Butterfly – Sum on mes Data Distribution on EREW-Mesh and Butterfly.	on ER h and	EW PR	AM – S rfly –	orting Matrix				
COURSE OL	UTCON	MES:								
At the end	of the	course students should be able to								
CO1 :	Basic class	ability to analyse algorithms and to determine algorithm corre	ctness	and tir	me effi	ciency				
CO2 :	Mast	er a variety of advanced data structures and their implementat	ions.							
CO3 :	Mast algor	Master different algorithm design techniques in computational geometry and in parallel algorithms.								
CO4 :	Abilit solve	ty to apply and implement learned algorithm design techniqu problems	es and	data s	structu	res to				
CO5 :	Abilit	y to use and apply search strategies in real world problems.								

	CO/PO MAPPING (1/2/3 indicates strength of correlation) 3-Strong, 2-Moderate, 1-Fair						
	604		PROGRAM	IME OUTCO	MES (POs)		
	COs	PO1	PO2	PO3	PO4	PO5	1
	CO1	3		2	3		
	CO2	2	2	3			
	CO3	2	2	3			
	CO4	2	2		2	3	
	CO5				2	3	
REFERENCE	BOOKS:						
R1 :	E. Horowitz, S. Sahni an Press, 2007.	d Dinesh I	Mehta, "Fund	amentals of	Data struc	tures in C++	·", University
R2 :	G. Brassard and P. Bratl	ey, "Algori	thmics, Theo	ry and Pract	ice", Printic	e –Hall, 198	38.
R3 :	Mark de Berg, Otfried (Algorithms and Applicat	Cheong, M tions", Thii	larc van Krev rd Edition, 20	eld, Mark O 08.	vermars,"C	omputation	al Geometry
R4 :	James A. Storer, "An Introduction to Data Structures and Algorithms", Springer, New York, 2002.						
	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to						
R5 :	Algorithms", 2009.						
LAB COMP	ONENT CONTENTS:						
1.	Linked lists						
2.	Multistacks						
3.	Double Ended Queue (Deques) &	Circular Queu	les			
4.	Min Heap						
5.	Deaps						
6.	Leftist Heap						
7.	AVL Tree						
8.	B:Tree						
9.	Quick Sort						
10.	Greedy algorithm						
11.	Knapsack using Dynami	c Program	ming				
12.	Graph coloring using ba	cktracking					
Theory:45	Tutorial:0		Practical:30			То	tal:75 Hours

21CP104	AGILE SOFTWARE ENGINEERING	L	Т	Р	С
		3	0	2	4
COURSE OBJECTIVES:					
 Agile Dev 	elopment training course will give an understanding of what Ag	ility me	ans, wl	hen and	why
to emplo	y Agile development, the pitfalls, issues and common mistakes	to wat	ch out	for, and	l will
cover key	methodologies including Scrum and Kanban.				
 We will 	also cover approaches, tools and scenarios to introduce A	gile to	your	organiza	ation
effectivel	у.				
PRE-REQUISITES:					
NIL					
THEORY COMPO	NENT CONTENTS:				
UNIT I	FUNDAMENTALS OF AGILE				9
The Genesis of A	Agile-Introduction and background-Agile Manifesto and Princi	iples. C	Verviev	w of Sc	rum-
Extreme Progra	mming-Feature Driven development-Lean Software De	velopm	nent-Ag	ile pr	oject
management-Des	sign and development practices in Agile projects- Test Driven	Develo	pment	-Contin	uous
Integration-Refac	toring-Pair Programming- Simple Design-User Stories-Agile Tes	ting-Ag	ile Tool	s.	
	AGILE SCRUM FRAMEWORK				9
Introduction to S	Scrum-Project phases-Agile Estimation-Planning game-Product	t backl	og- Spr	int bac	klog-
Iteration planning	g-User story definition-Characteristics and content of user sto	ories-Ac	ceptan	ce tests	and
Verifying stories-	Project velocity-Burn down chart. Sprint planning and retrospe	ective:	Daily so	crum. So	crum
roles – Product O	wner-Scrum Master-Scrum Team, Scrum case study-Tools for A	gile pro	piect m	anagem	ent.
		0	,	0	
	AGILE TESTING				9
The Agile lifecycle	e and its impact on testing: Test-Driven Development (TDD) -Un	it fram	eworka	and too	is for
IDD- Testing user	stories - acceptance tests and scenarios. Planning and managing	g testin	g cycle:	Explora	atory
testing-Risk based	a testing-Regression tests-rest Automation- roois to support th	e Aglie	tester		
UNIT IV	AGILE SOFTWARE DESIGN AND DEVELOPMENT				9
Agile design prac	ctices, Role of design Principles including Single Responsibili	ty Prin	ciple, (Dpen Cl	osed
Principle, Liskov S	Substitution Principle, Interface Segregation Principles, Depend	, ency In	versior	n Princip	ole in
Agile Design, Ne	ed and significance of Refactoring, Refactoring Techniques	, Conti	nuous	Integra	tion,
Automated build	tools, Version control			-	
UNIT V	INDUSTRY TRENDS				9
Market scenario	and adoption of Agile-Agile ALM-Roles in an Agile project-	Agile a	pplicab	ility-Agi	le in
Distributed team	s-Business benefits-Challenges in Agile, Risks and Mitigation	ı-Agile	project	s on Cl	oud-
Balancing Agility	with Discipline- Agile rapid development technologies.				
COURSE OUTCOM	ΛES:				
At the end of the	course students should be able to				
CO1: Articula	te the agile principles, practices, and roles of Scrum.				
I					

CO2 :	Perform Scrum Release Planning, and Scrum Sprint Planning.
CO3 :	Deconstruct user stories into tasks and ideal day estimates.
CO4 :	End a Sprint with Sprint Reviews and Sprint Retrospectives
CO5 :	Use Scrum with multiple, or distributed, project teams.

	CO/PO MAPPING (1/2/3 indicates strength of correlation) 3-Strong, 2-Moderate, 1-Fair						
	605		PROGRAM	IE OUTCOMES (P	Os)		
	COS	PO1	PO2	PO3	PO4	PO5	
	CO1	2	2				
	CO2	2		2			
	CO3			2	2	3	
	CO4		2		2		
	CO5				2	3	
REFEREN	CE BOOKS:						
R1 :	Ken Schawbei	r, Mike Beedle, "A	gile Software D	evelopment with	Scrum",	Publisher: Pe	arson.
R2 :	Lisa Crispin, . Publisher: Ado	Janet Gregory, "A dison Wesley.	gile Testing: A	Practical Guide	for Test	ers and Agilo	e Teams",
R3 :	Robert C. Ma Prentice Hall	rtin, "Agile Softwa	re Developmei	nt, Principles, Pat	terns an	d Practices",	Publisher:
R4 :	Alistair Cockb Wesley.	ourn, "Agile Softwa	are Developme	ent: The Cooperat	ive Gam	ne", Publishe	r: Addison
R5 :	David J. Anderson and Eli Schragenheim,"Agile Management for Software Engineering: Applying the Theory of Constraints for Business Results", Prentice Hall, 2003.						
R6 : Hazza and Dubinsky,"Agile Software Engineering", Series: Undergraduate Topics in Computer Science, Springer, 2009.							
LAB COM	PONENT CONT	ENTS					
1.	Team Work- I	mplementation of	Mini project u	sing agile model.			
Theory:4	5	Tutorial:0	Practic	al:30		Tota	l:75 Hours

COURSE OBJECTIVES: • The purpose of this course is to impart knowledge on IoT Architecture and various protocols, st their implementations PRE-REQUISITES:	udy					
The purpose of this course is to impart knowledge on IoT Architecture and various protocols, st their implementations PRE-REQUISITES:	udy					
PRE-REQUISITES:						
NIL						
THEORY COMPONENT CONTENTS:						
UNIT I OVERVIEW 9)					
IoT-An Architectural Overview: Building an architecture-Main design principles and needed capabilities	s-An					
IoT architecture outline, standards considerations. M2M and IoT Technology Fundamentals: Devices	and					
gateways-Local and wide area networking-Data management. Arduino vs Raspberry Pi vs Electric Imp –	Кеу					
features and comparisons Arduino Interfaces – Arduino IDE - Programming						
UNIT II REFERENCE ARCHITECTURE 9)					
IoT Architecture: State of the Art-Introduction-State of the art-Reference Model and architecture	-loT					
reference Model: IoT Reference Architecture- Introduction-Functional View- Information View-Deploym	nent					
and Operational View-Other Relevant architectural views. Real-World Design Constraints: Introduct	ion-					
Technical Design constraints-hardware-Data representation and visualization-Interaction and remote con-	trol.					
UNIT III IOT DATA LINK LAYER & NETWORK LAYER PROTOCOLS)					
PHY/MACLayer: 3GPP-MTC-IEEE 802.11-IEEE 802.15- Wireless HART-ZWave-Bluetooth-Zigbee Smart Energy-						
DASH7.Network Layer: IPv4-IPv6-6LoWPAN- 6TiSCH-DHCP-ICMP-RPL-CORPL-CARP.						
UNIT IV TRANSPORT & SESSION LAYER PROTOCOLS 9)					
Transport Layer:TCP-MPTCP-UDP-DCCP-SCTP-TLS-DTLS.Session Layer:CoAP- XMPP-AMQP- MQTT						
UNIT V SERVICE LAYER PROTOCOLS & SECURITY 9)					
Service Layer -oneM2M-ETSI M2M-OMA-BBF – Security in IoT Protocols :MAC 802.15.4	4,					
6LoWPAN.Application Layer.						
COURSE OUTCOMES:						
At the end of the course students should be able to						
CO1: To Understand the Architectural Overview of IoT	CO1: To Understand the Architectural Overview of IoT					
CO2: To Understand the IoT Reference Architecture and Real World Design Constraints						
CO3: To understand a design of different layers.	3: To understand a design of different layers.					
CO4: To choose and apply protocol for real world scenarios.						
CO5: Apply the security mechanism on IoT real time applications						

			/2/2 indicatos strong	th of correlation			
	3-Strong, 2-Moderate, 1-Fair						
60 -	PROGRAMME OUTCOMES (POs)						
COs	PO1	PO2	PO3	PO4	PO5		
CO1	2		2				
CO2				2	2		
CO3	2		2				
CO4		2		2	2		
CO5					3		
REFERENCE	BOOKS						
	Jan Holler, Vlasios	Tsiatsis, Cather	ine Mulligan, Stefan	Avesand, StamatisKar	rnouskos, David Boyle,		
R1:	"From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence",						
	1st Edition, Acade	mic Press, 2014	1.				
R2:	Peter Waher, "Lea	Internet	of Things", PACKT pu	ublishing, BIRMINGHA	AM – MUMBAI		
D2.	Bernd Scholz-Reiter, Florian Michahelles, "Architecting the Internet of Things", ISBN 978-3-642-						
NJ.	19156-5 e-ISBN 978-3-642-19157-2, Springer						
R/I·	Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M						
	Communications", ISBN: 978-1-118-47347-4, Willy Publications						
R 5.	Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-onApproach)", 1st Edition, VPT,						
N Э.	2014.						
LAB COMP	ONENT CONTENTS	:					
Arduino/Ra	spberry Pi Program	ming					
1.	Basic Arduino Pro	gramming					
2.	Controlling LED wi	ith Arduino					
3.	Working with sense	sors and actuat	ors				
4.	Serial Port Program	nming					
5.	Interfacing Arduin	o with module:	s and Shields				
6.	Interfacing with Ca	amera, SMTP, H	ITTP				
Theory:45	Tut	orial:0	Practical:30		Total:75 Hours		

21CP202 MACHINE LEARNING L T P				P	C	
	RIFCTIVI		3	U	Z	4
To understand the concents of machine learning						
 To appreciate supervised and unsupervised learning and their applications 						
 To understand the theoretical and practical aspects of Probabilistic Graphical Models 						
• To	apprecia	ate the concepts and algorithms of reinforcement learning				
• To	learn as	pects of computational learning theory				
PRE-REQU	SITES:	· · · · · · · · · · · · · · · · · · ·				
NIL	-					
THEORY CO	OMPON	ENT CONTENTS:				
UNIT I		SUPERVISED LEARNING				9
Definition	of M	achine Learning - Examples of Machine Learning A	pplicati	ons. S	SUPER	VISED
LEARNING:	Learning	g a Class from Examples - VC Dimension - PAC Learning - Noise -	Learni	ng Mult	tiple C	lasses
- Regressio	n - Mod	el Selection and Generalization - Dimensions of a Supervised Ma	achine L	earnin	g Algo	rithm.
Dimension	ality Rec	luction: Introduction - Subset Selection - PCA - FA - MDS - LD	A - Isor	nap - Lo	ocally	linear
Embedding						
UNIT II		MULTILAYER PERCEPTRONS				9
Introductio	n - The	Perceptron - Training a Perceptron - Learning Boolean Function	s - Mul	tilayer	Percep	otrons
- MLP as a	Universa	al Approximator - Backpropagation Algorithm - Training Proced	ures - T	uning t	he Ne	twork
Size - Dime	nsionali [.]	ty Reduction - Learning Time.				
						٩
Senarating	Senarating Hyperplane - Soft Margin Hyperplane - V-SVM - Kernel Trick - Vectorial Kernels - Defining Kernels					
- Multiple I	Kernel Le	earning - Multiclass Kernel Machines - One class Kernel Machin	es - Ker	rnel Din	nensic	onality
Reduction.						,
	D	HIDDEN MARKOV MODELS	1	Durkla		9
Introductio	n - Disci	rete Markov Processes - HMM - Basic Problems of HMMs - Eva	luation	Proble	2m - Fi	Inding
the State S	equence	e - Learning Model Parameters - Continuous Observations - The		with in	put - r	viodei
Selection In						1
UNIT V		REINFORCEMENT LEARNING				9
Introductio	n - Sing	le State Case-Elements of Reinforcement Learning - Model-B	ased Le	earning	- Tem	nporal
Difference	Learning	g - Generalization - Partially Observable States. Design of Mach	ine Lea	rning E	xperin	nents:
Introductio	n - Fa	ctors, Response, and Strategy of Experimentation - Res	ponse	Surface	e Des	sign -
Randomiza	tion, Re	plication, and Blocking - Guidelines for Machine Learning Experi	ments.			
COURSE O	лтсомі	ES:				
At the end	of the c	ourse students should be able to ,				
CO1:	To imp	lement a neural network for an application using an available t	ool			
c02.	To imp	element and analyse probabilistic discriminative and generativ	e algor	ithms f	or rea	l time
C02.	applications.					
CO3:	To use	a tool to implement typical clustering algorithms for different t	ypes of	applica	ations	
CO4:	To des	ign and implement an HMM for a sequence model type of appl	ication			
005	To ide	ntify applications for different types of machine learning with su	uitable	justifica	tion	
CO5:						

1								
	CO/PO MAPPING (1/2/3 indicates strength of correlation) 3-Strong, 2-Moderate, 1-Fair							
						ES (POs)		
	COs		PO1	PO2	PO3	PO	PO5	5
	CO1		2		2			
	CO2					2	2	
	CO3			2	2			
	CO4			2	2			
	CO5			2	2			
R	EFERENCE	BOOKS:						
	R1:	Etham A	Alpaydin, "Intro	duction to	Machine Learning", The I	MIT Pres	ss, Cambridge, 2010.	
	R2:	Drew Co	onway and Joh	n Myles Wh	ite, "Machine Learning fo	or Hacke	ers", O"Reilly, USA, 2	012.
	R3:	Christop	oher Bishop, "P	attern Recc	gnition and Machine Lea	arning", S	Springer, Heidelberg	, 2006.
	R4:	Tom M	Mitchell, "Mac	hine Learnii	ng", Mc-Graw Hill, New Y	'ork, 199	97.	
	R5:	Kevin P I	Murphy, "Macl	nine Learnin	g A Probabilistic Perspec	tive" <i>,</i> Th	e MIT Press, Cambrid	dge, 2012
L	AB COMP	ONENT C	ONTENTS:					
	1.	Naive Ba	ayes learner.					
	2.	Decisior	n Tree learners	•				
	3.	Perform	15-fold cross-va	alidation. (Y	ou need to choose the ap	propria	te options for missin	g values).
	4.	Estimate	e the precision	, recall, accu	uracy, and F-measure of t	the deci	sion tree classifier or	n the text
		classifica	ation task for e	ach of the 1	10 categories using 10-fo	ld cross-	-validation.	
	5.	Develop	the prediction	Model for	movies rating,			
	6.	Develop	the prediction	n Model usi	ng K-means algorithm			
	7.	Develop	the Reinforce	ment Learn	ing			
T	heory:45		Tutorial:0	Prac	tical:30		Total:	75 Hours

		L	т	Р	С	
21CP203	DATABASE TECHNOLOGY	3	0	2	4	
COURSE OBJECTIVES:						
• Def	ne parallel and distributed databases and its applications.					
 Sho 	w applications of Object Oriented database					
 Exp 	ain basic concepts, principles of intelligent databases.					
 Utilize the advanced topics of data warehousing and mining. 						
 Infer emerging and advanced data models 						
• Ext	end knowledge in research topics of databases.					
PRE-REQUISITE	6:					
NIL						
THEORY COMP	DNENT CONTENTS:					
UNIT I	REVIEW OF RELATIONAL DATA MODEL AND RELATIONAL DATA	BASE			9	
Rolational mor	al concentry Belational model constraints and relational dat	abaca	cchor		Indata	
Relational mot	er concepts. Relational model constraints and relational dat	abase	scher	inds- U	puale	
operations-and	nalies, dealing with constraint violations- Lypes and violations. Ove	erview	dt Ob	Ject Ori	ented	
Concepts: Obj	ects-Basic properties-Advantages-Abstract data types-Encapsu	lation	-class	hierar	chies-	
polymorphism-	examples.					
UNIT II	OBJECT AND OBJECT-RELATIONAL DATABASES				9	
Overview of OC	P:Object model of ODMG. Object definition Language ODL: Obje	ct Qu	ery La	nguage	OQL-	
Conceptual des	ign of Object database. Overview of object relational features	of SQI	L: Obje	ect-rela	tional	
features of Or	acle-Implementation and related issues for extended type sy	stems	-synta:	x and	demo	
examples-the n	ested relational model. Overview of C++ language binding;					
	PARALLEL AND DISTRIBUTED DATABASES: ARCHITECTURES FOR	PARA	LLEL		0	
	DATABASES				5	
Parallel query	valuation-Parallelizing individual operations-Parallel query optim	nizatio	ns. Int	roduct	ion to	
distributed dat	abases-Distributed DBMS architectures-Storing data in a Distri	buted	DBM	S-Distri	buted	
catalog manage	ment-Distributed Query processing- Updating distributed data-	Distrik	outed	transad	tions-	
Distributed Cor	currency control and Recovery.					
UNIT IV	DATA WAREHOUSING. DECISION SUPPORT AND DATA MINING				9	
Introduction to	decision support-OLAP-multidimensional model-Window queries	in SQ	L- Fin	ding an	swers	
quickly-Implem	entation techniques for OLAP-Data Warehousing. Views and	Decisi	ion su	pport:	View	
materialization-Maintaining materialized views. Introduction to Data Mining-Counting co-occurrences-						
Mining for rules-Tree-structured rules-ROC and CMC Curves-Clustering-Similarity search over sequences-						
Incremental mi	ning and data streams-Additional data mining tasks.					
UNIT V ENHANCED DATA MODELS FOR SOME ADVANCED APPLICATIONS 9					9	

Active database concepts and triggers-Temporal-Spatial and Deductive-More Recent Applications: Mobile databases-Multimedia databases-Geographical Information Systems: Genome data management.

COURSE OUTCOMES:

At the end of the course students should be able to

CO1 :	Evaluate the high performance database like parallel and distributed database
CO2 :	Infer and represent the real world data using object oriented database
CO3 :	Interpret rule set in the database to implement data warehousing in mining
CO4 :	Discover and design database for recent applications database for better interoperability
CO5 :	Extend knowledge in research topics of databases.

CO/PO MAPPING (1/2/3 indicates strength of correlation) 3-Strong, 2-Moderate, 1-Fair

		-							
<u> </u>	PROGRAMME OUTCOMES (POs)								
COS	PO1	PO2	PO3	PO4	PO5				
CO1	2	2							
CO2			2	2	3				
CO3	2	3							
CO4			2	2	3				
CO5		3	2						

REFERENCE BOOKS:

- **R1**: Elmasri and Navathe,"Fundamentals of Database Systems", Pearson Education, 2013.
- R2: Raghu Ramakrishnan and Johannes Gehrke,"Database Management Systems", 3rd Edition, McGraw-Hill, 2013.
- **R3**: Abraham Silberschatz, Henry F. Korth, S. Sudarshan,"Database System Concepts", 6th Edition, McGraw Hill, 2010.
- **R4 :** Thomas Cannolly and Carolyn Begg, "Database Systems, A Practical Approach to Design, Implementation and Management", Third Edition, Pearson Education, 2007.
- **R5 :** C.J.Date, A.Kannan and S.Swamynathan,"An Introduction to Database Systems", Eighth Edition, Pearson Education, 2006.
 - **R6 :** V.S.Subramanian, "Principles of Multimedia Database Systems", Harcourt India Pvt. Ltd., 2001.

LAB COMPONENT CONTENTS: Database Design and Implementation

Database Design and implementation				
1.	Object-relational features of Oracle			
2.	Mobile databases			

4.	Geographic	al Information Syste	ms			
5.	Genome da	ta management				
Theory:45	Tutorial:0Practical:30Total:75 Hours					

21CP2	01		RES	EARCH METHODOLOGY	(L 3	Т 0	Р 0	C 3		
Z1CP201 RESEARCH METHODOLOGY 3 0 0 COURSE OBJECTIVES: 3 0 0											
 Ability to critically evaluate current research and propose possible alternate methods for furtherwork. 											
fur	therwor	k.	-		-						
• Abi	ility to de	evelop	o hypothesis / P	roblem Statement and	methodology forr	eseard	:h.				
 Abi 	ility to co	ompre	hend and deal	with complex research i	ssues in order to	comm	unicat	e their			
scie	entific re	esults o	clearly for peer	review.							
PRE-REQUI	SITES:										
• NIL	-										
THEORY CO	OMPONE	ENT CO	ONTENTS:								
UNIT I			INTRODUCTION	TO RESEARCH METHO	DOLOGY				9		
Meaning o	f Resea	rch-Ty	pes of Resear	ch-Research Process-Pr	oblem definition	-Objec	tives	of Rese	earch-		
Research C	Question	s- Res	earch design-	Approaches to Researc	h- Quantitative v	s. Qu	alitativ	e Appr	oach-		
Understand	ding The	ory-Bı	uilding and Valio	dating Theoretical Mode	els- Exploratory vs	. Conf	irmato	ory Rese	earch-		
Experiment	tal vs The	eoreti	cal Research- In	nportance of reasoning	in research.						
UNIT II			LITERATURE RE	VIEW					9		
Problem Fo	ormulatio	on-Un	derstanding M	odeling & Simulation-Co	onducting Literati	ure Re	view-	Refere	ncing-		
Informatio	n Source	es-Info	rmation Retrie	val-Role of libraries in I	nformation Retrie	eval- T	ools fo	or ident	tifying		
literatures-	Indexing	g and a	abstracting serv	ices-Citation indexes.							
UNIT III DATA COLLECTION AND SAMPLING DESIGN 9											
Experiment	tal Rese	arch:	Cause effect	relationship-Developme	ent of Hypothesi	s-Mea	surem	ent Sy	stems		
Analysis-Er	ror Prop	oagatio	on-Validity of e	xperiments-Statistical E	Design of Experim	ents-	Field	Experin	nents-		
Data/Varia	ble Type	es & C	Classification-Da	ta collection. Numerica	al and Graphical	Data	Analys	is: Sam	pling-		
Observatio	n-Survey	/s-Infe	rential Statistic	s-and Interpretation of	Results.						
UNIT IV			RESEARCH REP	ORTS					9		
Preparation	n of Disse	ertatic	on and Research	Papers-Tables and illus	trations-Guideline	es for v	vriting	the abs	stract-		
introductio	n- meth	odolo	gy-results and d	iscussion- conclusion se	ctions of a manus	cript- I	Refere	nces-Ci	tation		
and listing	system c	of doci	uments.								
UNIT V		I	INTELLECTUAL	PROPERTY RIGHTS (IPR)) AND PATENTS				9		
Intellectual	propert	y right	ts (IPR) - patent	s-copyrights-Trademark	s-Industrial desig	n geog	raphic	al indic	ation.		
Ethics of Re	esearch-	Scient	tific Misconduc	t- Forms of Scientific Mi	isconduct. Plagiari	ism-Uı	nscient	tific pra	ctices		
in thesis wo	ork. Ethio	cs in s	cience.								
Theory:45			Tutorial: 0	Practical: 0			Тс	tal:45	Hours		
	UTCOME	S			•						
At the end	of the co	ourse	students should	l be able to							
CO1:	Recogn	nize th	e importance o	f literature review.							
CO2: Identify the different types of research.											
CO3:	Formulate problem statement and develop mathematical models for different problems.										
CO4:	Formul	late m	ethodology of r	esearch and experimen	ital analysis.						
CO5:	Analyze	e the r	esults using sta	tistical methods, interp	retation of results	with	referer	nce to s	imilar		
	researc	ch out	comes.								
	researc	ch out	comes.								

CO6: Prepare technical reports and research papers.

CO/PO MAPPING (1/2/3 indicates strength of correlation) 3-Strong, 2-Moderate, 1-Fair

60 2		P	ROGRAMME OUTC	OMES (POs)								
COS	COS PO1 PO2 PO3 PO4 PO5 CO1 3 3 3 3 3 3											
CO1	3	3	3	3	3							
CO2	3	3	3	3	3							
CO3	3	3	3	3	3							
CO4	3	3 3 3 3 3										
CO5	3 3 3 3 3											
REFEREN	CE BOOKS											
R1:	C.R. Kothari, "I	Research Methodolo	ogy Methods & Tech	iniques",New Age inte	ernational Publishers,							
	Reprint 2008.											
R2:	R. Panneerselv	/am, "Research Met	hodology", PHI 2004	4.								
R3:	Deepak Chawl	la, NeenaSodhi "Res	search Methodolog	y concepts and cases	5 " 2 nd edition, Vikas							
	Publishing hou	ise pvt ltd.										
R4:	Michael Quin	n Patton "Qualita	tive Research &	Evaluation Methods	" 3rd edition, Sage							
	Publications.											
R5:	Paul D. Leedy, Jeanne Ellis Ormrod "Practical Research: Planning and Design", Prentice Hall											
Theory: 4	15	Tutorial: 0	Practical:0		Total:45 Hours							

21PCP01	-	CLOUD SERVI	CES AND VIRTUALIZA	TION	L 2	T	P 2	C 3				
COURSE OB	ZIPCPUI CLOUD SERVICES AND VIRTUALIZATION 2 0 2 JRSE OBJECTIVES: 2 0 2											
 To explore the legacy OSs on virtual machines. How the intricacies of server, storage, network, desktop and application virtualizations of working To understand and differentiate full and para virtualization. To create cloud applications in virtual machine platforms. PRE-REQUISITES:												
PRE-REQUIS	ITES:											
NIL												
UNITI	- Facantia	INTRODUCTION	a and IT Daranastiva	Cloud and Virtu	alizati	ion C		6				
Introduction - Essentials - Benefits - Business and IT Perspective - Cloud and Virtualization - Cloud Services Requirements - Cloud and Dynamic Infrastructure - Cloud Computing Characteristics - Cloud Adoption - Cloud Models - Cloud Characteristics - Measured Service - Cloud Models - Security in a Public Cloud - Public versus Private Clouds - Cloud Infrastructure Self Service.												
UNIT II		CLOUD SERVICES AN						6				
Principal Teo Model - Clo Managemer	chnologies ud Service nt - Cloud S	 Cloud Strategy - C Defined. Cloud Solu Service Management 	loud Design and Imp tions: Introduction - - Cloud Stack - Comp	lementation using Cloud Ecosystem outing on Demand	g SOA - Clou (CoD)	- Conc Id Busi – Clou	eptual iness F ud Sou	Cloud Process rcing.				
UNIT III		CLOUD OFFERINGS	AND CLOUD MANAG	EMENT				6				
Cloud Offeri Cloud - Infor - Provisionin Models - Us	ngs: Inforr mation Se ng - Asset N age Report	nation Storage - Reti curity - Virtual Deskto Aanagement - Cloud ting - Billing and Met	rieval - Archive and P op Infrastructure - Stc Governance - High A ering.	Protection - Cloud prage Cloud. Cloud vailability and Disa	Analy Mana aster F	tics - I agemei Recove	esting nt: Res ery - Ch	under siliency arging				
UNIT IV		CLOUD ENABLIBNG	TECHNOLOGIES					6				
Data Center Technology	Technolog - Case Stud	gy - Virtualization Te dy in AWS.	chnology - Web Tech	nnology - Multiter	ant To	echnol	ogy - S	Service				
UNIT V		CLOUD VIRTUALIZA	ΓΙΟΝ					6				
Virtualizatio Hypervisor Requiremen Virtualizatio	n Defined Managem ts - Storag n - Virtuali	- Virtualization Bene ent Software - Log e virtualization - Stor zed Data Center.	fits - Server Virtualiz cal Partitioning (LP rage Area Networks -	ation - Virtualizati AR) - VIO Server • Network- Attach	ion foi - Vir ed sto	r x86 A tual li rage -	Archite nfrastr Cloud	cture - ucture Server				
Theory	: 30	Tutorial: 0	Practical: 0	Tot	al: 30	Hours						
COURSE OU	TCOMES:	1	I									
At the end c	of the cours	se students should be	e able to,									
CO1:	Deploy le	gacy OSs on virtual n	nachines.									
CO2:	Distinguis	sh the intricacies of s	erver, storage, netwo	ork, desktop and a	pplica	tion vi	rtualiz	ations.				
CO3:	Compare	full and Para virtuali	zation.									
CO4:	Producing	g cloud applications i	n virtual machine pla	tforms.								
CO5:	Understa	nd the basic idea of A	AWS.									

	—	<u> </u>		1/2/2 :	licotos strongt	h of course	ation)	1		
		0/20		1/2/3 Ind	Acdorato 1-Ea	n of correla	ation)			
			5-51	PROGRA		MFS (POs)		-		
		COs	PO1	PO2	PO3	PO4	PO5	-		
		CO1	2	2				-		
		CO2			2	2		-		
		CO3				2	2	-		
		CO4		2		2	2			
		CO5	2		2					
REFERE						•	•			
R1:	James E. Sn Elsevier/Mo	nith, Ravi N organ Kaufr	air, "Virtual nann, 2005.	Machines	s: Versatile Pla	tforms for S	Systems and	Processes"		
R2:	David Mars Platform in	hall, Wade	A. Reynolds	, "Advanc " Auerba	ed Server Virt	ualization: \ s. 2006.	VMware and	l Microsoft		
R3	Kumar Reddy, Victor Moreno, "Network virtualization" Cisco Press, July, 2006									
R4:	Chris Wolf,	Erick M. Ha	alter, "Virtua	lization: I	From the Desk	top to the I	Enterprise",	Apress 2005.		
R5:	Danielle Ru	est, Nelson	Ruest" Virtu	ualization	: A Beginner"s	Guide", TN	/H, 2009			
R6:	Thomas Erl Architectur	, Zaigham N e", Prentice	/lahmood, R e Hall Service	icardo Pu e Technol	ttini, "Cloud C ogy Series, 20	omputing: (13	Concepts, Te	echnology and		
R7:	Kenneth He Prentice Ha	ess, Amy Ne Ill 2010	ewman: "Pra	ctical Virt	cualization Solu	utions: Virtı	ualization fro	om the Trenches"		
R8:	John Ritting Strategy", C	ghouse, Jam CRC Press, 2	nes Ransome 2010	e," Cloud	Computing, Im	nplementat	ion, Manage	ement and		
R9:	Anthony T. 2010	Volte, Toby	/ J. Volte, Ro	bert Elsei	npeter "Cloud	Computing	: A Practical	Approach",TMH,		
R10:	Lee Badger, Recommen	, Tim Granc dations ",N	e, Robert Pa IST, May 20	itt-Cornei 11	r, Jeff Voas – "	Cloud Com	outing Synop	osis and		
R11:	Tom White Media Pres	," Hadoop: s May 2012	The Definiti	ve Guide	Storage and A	nalysis at Ir	nternet Scale	e", O'Reilly		
R12:	R12:Dave Shackleford , "Virtualization security- Protecting Virtualized Environments", Sybex Publishers, First Edition, 2012									
LAB CC	MPONENT C	ONTENTS:								
1.	Deployment	t of private	cloud							
2.	Launch you	r VM in the	EC2 Cloud							
Т	heory: 0		Tutorial: 0		Practical	: 30	Tota	l: 30 Hours		

21PC	P02	SOFTWARE QUALITY ASSURANCE AND TESTING	L 2	Т 0	P 2	C 3				
COURSE	OBJECTI	VES:								
	To lea	arn the concepts of software quality assurance framework								
	 To Ui 	nderstand the process of software testing throughout the software dev	elopi	ment	pro	cess				
	• To Ar	alyze software quality assurance metrics, difficulties and limitations			•					
	• To in	terpret the knowledge of testing tools.								
PRE-REC	UISITES:									
	NIL									
THEORY	СОМРО	NENT CONTENTS:								
UNIT I		SOFTWARE QUALITY ASSURANCE FRAMEWORK AND PLAN			6	5				
Software	e Quality	Assurance Framework and Standards SQA Framework: What is Quality	? - C	ompo	onen	its of				
Software	e Quality	Assurance - Software Quality Assurance Plan - Steps to develop and imp	leme	ent a 2	Soft	ware				
Quality A	Assurance	Plan. Quality Standards: ISO 9000 and Companion ISO Standards.								
-										
			T14/0							
UNIT II		SUFTWARE QUALITYASSURANCE METRICS AND MEASUREMENT SUF	IVVA	IKE)				
Droduct	Quality	QUALITY METRICS	<u> </u>			oc of				
Product Motrie D	Quality	netrics - in-process Quality Metrics - Metrics for Software Maintena	nce ·	- Exa	npie	25 01				
Metric P	rograms.									
UNIT III		SOFTWARE QUALITY METRICS			6	5				
Software	e Quality	Metrics Methodology: Establish quality requirements - Identify Softwar	re qu	ality	met	rics -				
Impleme	ent the So	oftware Quality Metrics - Analyze Software Metrics Results - Validate the	e Sof	twar	e Qı	uality				
Metrics	- Softwar	e Quality Indicators -Fundamentals in Measurement Theory.								
		SOFTWARE TESTING TECHNIQUES			6					
	v Doun			<u> </u>	- C	,				
Black-BO	nx - Boun	Bary Value - Boltom-up - Branch Coverage - Cause-Effect Graphing - C		J - Da dom	Tab	ase -				
Exceptio	nd Tostin	Box - Histograms - Hispections - JADS - Pareto Analysis - Prototyping -	rfor	mana	1051	.iiig -				
KISK-DdS	eu resun Pov Tosti	g - Regression resung - Structured Waikthroughs - Inread resung - Pe	enon	nance	ere	sting				
- white-	box resu	ng.								
UNIT V		SOFTWARE TESTING TOOLS			6	5				
Taxonon	ny of Test	ting Tools - Methodology to Evaluate Automated Testing Tools - Load Rι	unne	r - Wi	n ru	nner				
and Rati	onal Test	ing Tools - Java Testing Tools – Jmetra - JUNIT and Cactus.								
	Theory: 3	0 Tutorial: 0 Practical: 0 Tot	al: 3	0 Hoi	irs					
COURSE	OUTCOM	<u>/////////////////////////////////////</u>								
At the er	nd of the	course students should be able to								
CO1:	Unders	and the effective strategies, methods and technologies of software tes	ting							
CO2:	CO2: Design test plan and test cases to perform automatic testing									
CO3:	Apply e	ffective software testing techniques in software development								
CO4:	Report	clear and correct software defectives								
COT.		t distinguished tool for software testing								

		CO/PO N	/APPING (1/ 3-Stro	2/3 indi ong, 2-M	cates strength loderate, 1-Fair	of correla	tion)					
				PROGRAMME OUTCOMES (POs)								
		COs	PO1	PO2	PO3	PO4	PO5					
		CO1	2	2								
		CO2		2	2							
		CO3			2	2						
		CO4				2	2					
		CO5			2		2					
REFERE	ENCE BOOKS:	BOOKS:										
R1:	Effective Me	ethods for So	oftware Test	ing, 2nd	Edition, Willian	n E. Perry,	Second Editi	on, Wiley India,				
	2006.	2006.										
R2:	Software Qu	uality, Morde	echai Ben-M	enachen	n/Garry S. Marl	iss, Thoms	on Learning	publication,				
	1997.											
R3:	Testing and	Quality Assu	irance for Co	mponer	nt-based Softwa	are, by Gao	o, Tsao and V	Vu, Artech				
	House Publi	shers	· -				· -					
R4:	Software Te	sting Techni	ques, by Bor	ies Beize	er, Second Editi	on, Dream	tech Press					
R5:	Handbook o	of Software C	Quality Assur	ance, by	G. Gordon Sch	ulmeyer, J	ames I.McMa	anus, Second				
	Edition, Inte	ernational Th	omson Com	puter Pr	ess							
R6:	Metrics and	Models for	Software Qu	ality Eng	gineering, by Ste	ephen H. K	(an, by Pears	on Education				
	Publication.											
R7:	Software Te	sting fools,	K.V.K.K. Pras	ad, Drea	am tech press, 2	2008.						
LAB CC	DMPONENT C	ONTENTS:										
1.	Write a tes	t cases for a	ny known ap	plicatio	าร							
2.	Track the b	ug in bug tra	icking tool									
3.	Execute the	e test case in	selenium au	utomatio	on tool.							
Th	neory: 0	Т	utorial: 0		Practical	: 30	Total:	30 Hours				

210/016	DIGITAL IMAGE PROCESSING	L	Т	Р	С							
2190010		2	0	2	3							
COURSE OBJ	CTIVES											
This course w	This course will enable students to											
• U	 Understand fundamentals of digital image Learn different image transforms 											
 Learn different image transforms Study concept of segmentation 												
• S	Study concept of segmentation											
THEORY COM	PONENT CONTENTS				ſ							
UNITI	DIGITAL IMAGE FUNDAMENTALS				9							
A simple ima Systems, Diff	A simple image model, Sampling and Quantization, Imaging Geometry, Digital Geometry, Image Acquisition Systems, Different types of digital images. Basic concepts of digital distances, distance transform, medial axis											
	IMAGE TRANSFORMS	stay sc		n priore	9							
1D DFT, 2D tr	ansforms - DFT, DCT, Discrete Sine, Walsh, Hadamard, Slant, Haar, KI	T. SVD	Wave	elet tra	nsform							
	SEGMENTATION OF GRAY LEVEL IMAGES	1, 510	,		9							
Histogram of Watershed an order and se transform for	gray level images, multilevel thresholding, Optimal thresholding d Dam Construction algorithms for segmenting gray level image. De- cond order edge operators, multi-scale edge detection, Canny's edge detecting lines and curves, edge linking.	using tection ge det	Baye: of ed ection	sian cl ges and algorit	assification, d lines: First thm, Hough							
UNIT IV	IMAGE ENHANCEMENT AND COLOR IMAGE PROCESSING				9							
Point proces restoration. C segmentation UNIT V Lossy and los	sing, Spatial Filtering, Frequency domain filtering, multi-spectral olor Representation, Laws of color matching, chromaticity diagram, c , color edge detection, color demosaicing IMAGE COMPRESSION	imag olor er vecto	e enh ihance r quan	tizatio	nent, image color image 9 n, sub-band							
encoding sch	encoding schemes, JPEG compression standard, Fractal compression scheme, Wavelet compression scheme.											
Theory: 45	Tutorial: 0 Practical: 0 Project: 0 Total: 45 Peri	ods										
At the end of	Line course students should be able to											
CO2 :	Explain color image processing											
CO3 :	Compare image compression schemes											

		CO/PO MA	PPING (1	/2/3 indicates	strength	of correlati	ion)	
			3-Str	ong, 2-Modera	te, 1-Fair		-	
		604						
		COS	PO1	PO2	PO3	PO4	PO5	
		CO1	2	2				
		CO2			2	2		
		CO3				2	2	
		CO4		2		2	2	
		CO5	2		2			
REFEREN	NCE BOOKS							
R1	A.K. Jain, "Fur	ndamentals of D	igital Ima	age Processing'	, Prentice	e-Hall, Addi	ison-Wesley	, 1989.
R2	Bovik (ed.), "H	landbook of Im	age and \	/ideo Processir	g", Acade	emic Press,	2000	
LAB CON	MPONENT CON	TENTS						
1.	Implement a f	function in MA	LAB for i	mage segment	ation			_
2.	Implement a f	function in MA	LAB for i	mage morphole	ogy that a	analyze the	form and sh	ape detail of
	image structu	res.						
3.	Implement a f	function in MA	LAB for I	mage Restorati	on.			
4.	Models for re	presenting the	color and	methods of pr	ocessing	the color p	lane.	_
5.	Implement Sn	noothing and S	narpening	g of an eight bit	color im	age.		_
Theory:	0	Tutorial:0	Pra	ctical:30	Project	:0	Total:30 pe	eriods

Γ

21PCP04 ARTIFICIAL INTELLIGENCE L T P C													
21FCF04	P04 2 0 2 0												
COURSE OBJECTIVES This course will enable students to													
This course w	 This course will enable students to Understand the fundamentals of Artificial Intelligence 												
• L	Jndersta	and the fund	amentals of	Artificial In	telligence								
• L	earn the	e basics of pr	roblem spac	es and sear	ch technique	es							
• L	earn ga	me playing t	echniques a	ssociated w	ith artificial	intelligence							
• L	Jndersta	and knowled	ge represen	tation and r	reasoning te	chniques							
• [Develop	simple prog	rams in PRO	LOG	U	·							
			<u>د</u>										
UNITI				RTIFICIAL	NTELLIGENC	F				9			
The Al proble	ms. Al t	echnique, pl	hilosophy ar	nd develop	nent of Artif	icial intelligen	ce						
	JNIT II PROBLEM SPACES AND SEARCH												
State space s	earch. L	Ininformed a	and informe	d search teo	hniques:BE	S. A*. variation	ns of A*	. Local	searc	h and			
optimization	: hill clin	nbing, simula	ated anneali	ng		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
	-	ADVERSA	RIAL SEARC		IE PLAYING					9			
Minimax algo	orithm, a	alpha-beta p	runing, stoc	hastic game	es, Constrain	t-satisfaction	proble	ms					
		KNOWLEI	DGE AND RE		,		•			9			
Logical agent	s, Propo	ositional logi	c, First-orde	r logic, Infe	rence in FoL	: forward chai	ning, b	ackwa	rd cha	ining,			
resolution, Ki	nowledg	ge represent	ation: Frame	es, Ontologi	es, Semanti	c web and RDI	F			0			
UNIT V		UNCERTA		DGE, REAS	ONING AND	PROLOG				9			
Probabilistic	reasoni	ng, Bayesiar	n networks,	Fuzzy logi	c Facts and	predicates, o	data ty	pes, g	oal fir	iding,			
backtracking,	, simple	object, cor	mpound obj	ects, use o	of cut and f	ail predicates	, recur	sion, l	ists, si	imple			
input/output	, dynam	ic database											
Theory: 45		Tutorial: 0	Practi	cal: 0 Pro	ject: 0	Total: 45 Peri	ods						
COURSE OUT	COMES												
At the end of	the cou	urse students	s should be	able to									
CO1 :	Under	stand Artific	ial Intelligen	ce, its foun	dation and p	principles.							
<u> </u>	Examiı	ne the usefu	I search tech	nniques; lea	rn their adv	antages, disad	lvantag	es and	l				
	compa	irison.											
CO3 :	Learn	the basics of	game playi	ng									
CO4 :	Under	stand knowl	edge and re	asoning									
CO5 :	Apply	PROLOG to s	olve basic A	I problems									
		CO/PO N	APPING (1/	/2/3 indicat	es strength	of correlation)						
			3-Stro	ong, 2-Mod	erate, 1-Fair		,						
COs PO1 PO2 PO3 PO4 PO5													
		CO1	2	2	105	104	105						
		CO2	۷.	<u> </u>	2	2		_					
		(03			<u> </u>	2	2	_					
		CO4		2		2	2						
		CO5	2	<u> </u>	2		2						
	L	300	<u> </u>	l		I							

TEXT BO	TEXT BOOKS									
T1	Artificial Intelligence, Elaine Rich & Kevin Knight, TMH Publication									
REFEREN	NCE BOOKS									
R1	Introduction t	to Turbo PROLOG, C	arl Townsend, BPB P	Publication						
R2	Introduction t	to AI & Expert System	ms, Dan W. Patterso	n, PHI Publication						
LAB CON	VIPONENT CON	ITENTS								
1.	Study of facts, objects, predicates and variables in PROLOG									
2.	Study of Rules	s and Unification in	PROLOG.							
3.	Study of "cut"	and "fail" predicate	e in PROLOG.							
4.	Study of arith	metic operators, sin	nple input/output ar	nd compound goals	in PROLOG.					
5.	Study of recu	rsion in PROLOG.								
6.	Study of Lists	in PROLOG.								
7.	Study of dyna	mic database in PRO	DLOG							
8.	Study of string	g operations in PRO	LOG. Implement stri	ng operations like s	ubstring, string position,					
	palindrome et	tc.)								
9.	Write a prolog	g program to mainta	ain family tree.							
10.	Write a prolog	g program to impler	nent all set operatio	ns (Union, intersect	ion, complement etc.)					
11	Write a prolog	g program to impler	nent Library Manage	ement system.						
12.	Write a prolog	g program to solve "	'Water Jug Problem"							
Theory:	0	Tutorial:0	Practical:30	Project:0	Total:30 periods					

P190	SPE004			VIDEO AN	ALYTICS		L	T	P	C	
COURSE		S:					2	U	2	5	
•	To understa To understa To demonst	and th and th trate r	e fundamenta e real time, u eal time imag	als of digital i se of image a te and video	mage processin Ind video analyi analytics applica	ig, image and tics. ations and of	d video a	nalysis.			
PRE-RE	QUISITES:										
NI	L										
THEOR		NT CO	ONTENTS:								
UNIT I	DIG	ITAL I	MAGE REPRE	SENTATION						6	
Visual Perception- Sampling and Quantization- Basic Relations between Pixels. Mathematical Tools Used in Digital Image Processing: Fundamental Operations –Vector and Matrix Operations- Image Transforms (DF DCT, DWT, Hadamard).											
UNIT II FUNDAMENTALS OF SPATIAL FILTERING 6											
Spatial	correlation	and c	onvolution-sn	noothing blu	rring- sharpenir	ng- edge det	ection. E	Basics o	f filter	ing in	
the freq	uency doma	ain: sr	noothing-blur	ring- sharpei	ning -Histogram	s and basic s	tatistica	l model	s of im	lage.	
UNIT III	COL	OUR	MODELS AND	TRANSFORM	MATIONS					6	
Image a	ind Video se	egmer	ntation-Image	and video d	emonising- Ima	ge and Vide	o enhan	cement	- Imag	e and	
Video co	ompression.								r		
	OBJ	ECT D	ETECTION AN	ID RECOGNIT	TON IN IMAGE	AND VIDEO				6	
Texture	models Ima	ige an	d Video 25 cla	assification m	nodels- Object t	racking in Vi	deo.				
		LICAI	IONS AND CA	SE STUDIES						6	
Industri	al- Retail- I	ransp	ortation & Tr	avel- Remote	e sensing. Video	o Analytics I	n wsn:		eo Ana	liytics	
Archited	an a		Tutorial: 0		Bractical: 0			Tot	hal.20	Hours	
COUPS		<u>د</u> ،						10	Lai.50 i	Tours	
	nd of the co		students shou	Id he able to							
CO1 :	Understan	d the	fundamental	concents of	, image and video	n analysis					
CO2:	Ability to i	dentif	v the colour r	nodels and ir	nages in the vid	leo and imag	e natter	ns			
							e putter				
CO3:	Apply image	ge and	d video analys	is in real wor	la problems.	-					
CO4:	Apply the	unic - +		Lechnique in	appropriate are	d.					
05:	Understan	ungt	ine image and	i video analyi	lics in real world	a application	5.				
		С	O/PO MAPPI	NG (1/2/3 in 3-Strong, 2-	dicates strengtl Moderate, 1-Fa	h of correlat ir	ion)				
	<u> </u>			PROG	RAMME OUTCO	OMES (POs)					
	COS		PO1	PO2	PO3	PO4		PO5			
	CO1			2	2						
	CO2 2 2 CO2 2 2										
	CO3 2 2 2 CO4 2 2 2										
	CO4 2 2 CO5 2 2										
	CO5					2		2			
REFERE	NCE BOOKS	:									
R1:	R.C. Gonza	lez ar	nd R.E. Woods	s." Digital Ima	age Processing"	. 3rd Edition	Addisor	n Wesle	y, 200 [°]	7.	

R2:	W. Härdle, M. Müller, S. Sperlich, A. Werwatz, "Nonparametric and Semi parametric Models", Springer, 2004.						
R3:	Rick Szelisk, "Computer Vision: Algorithms and Applications", Springer 2011.						
R4:	Jean-Yves Dufour, "Intelligent Video Surveillance Systems", Wiley, 2013.						
R5:	Caifeng Shan, Fatih Porikli, Tao Xiang, Shaogang Gong, "Video Analytics for Business Intelligence", Springer, 2012.						
R6:	AsierPerallos, Unai Hernandez-Jayo, Enrique Onieva, Ignacio Julio García Zuazola, "Intelligent Transport Systems: Technologies and Applications", Wiley, 2015.						
R7:	Basudeb Bhatta, "Analysis of Urban Growth and Sprawl from Remote Sensing Data", Springer, 2010.						
LAB CO	MPONENT CONT	ENTS:					
1.	Study on An Ope	en-Source Platform for Un	derwater Image and Video	Analytics.			
2.	Study on Video a	analytics for surveillance c	amera networks.				
3.	Study on Motion detection, tracking and classification for automated Video Surveillance.						
Theory:	0	Tutorial: 0	Practical:30	Total:30 Hours			

21PCP06		ADV	ANCED SOFT C	OMPUTING		L 2	T O	P 2	C R
COURSE	OBJECTIVES:					-	Ū	-	
	 To familiarize various soft computing techniques. To relate various soft computing techniques in practical scenario. To understand hybrid approach for application development. 								
PRE-REC	UISITES:	, ,,	••	I					
NIL									
THEORY	COMPONENT	CONTENTS:							
UNIT I	INTR	ODUCTION							6
Differentiate Hard and Soft Computing- Soft Computing Constituents- Neuro Fuzzy and Soft Computing Characteristics.									
UNIT II	FUZZ	Y LOGIC & ROUGI	H SET THEORY						6
Fuzzy Re Inferenc	Fuzzy Relations and Fuzzy Rules - Generalized Moderns Ponens - Defuzzification and its Types Fuzzy Inference Systems- Design of Fuzzy Controller- Introduction to Rough Sets.								
UNIT III	SUP	ERVISED AND UNS	UPERVISED NE	TWORKS					6
Error Ba Learning	Error Back Propagation Training Algorithm- Radial Basis Function- Kohenon Self Organizing Maps- Basic Learning Vector Quantization- Basic Adaptive Resonance Theory.								
UNIT IV	НҮВ	RID SYSTEMS AND	INTRODUCTIC	N TO DEEP L	EARNING				6
Fuzzy-Neural Systems- Neuro-Genetic Systems Fuzzy- Genetic Systems- Deep Learning: Definition & background-historical context of deep learning- Three classes of deep learning network.									
UNIT V	UNIT V APPLICATIONS AND CASE STUDY 6								
Automobile Fuel Efficiency using ANFI- Colour Recipe prediction using CANFIS.									
Theory:3	30	Tutorial: 0		Practical: 0			Tota	al:30 I	lours
COURSE	OUTCOMES:								
At the er	nd of the cours	e students should	be able to,						
CO1:	To demonstr	ate various soft co	mputing techni	iques.					
CO2:	To apply and	analyse different	soft computing	techniques fo	or solving pra	ctical a	pplica	tions.	
CO3:	To design an	intelligent system	for social and t	echnical prob	olems.				
CO4:	Handle multi	objective optimiza	ation problems	•					
CO5:	Apply rough	set theory and gra	nular computin	g to solve pro	ocess control	applica	ition.		
		CO/PO MAPPING 3-:	(1/2/3 indicat Strong, 2-Mode	es strength o erate, 1-Fair	f correlation)				
	00		PROGRAM	ME OUTCON	1ES (POs)				
	cos	PO1	PO2	PO3	PO4	Р	05		
	CO1	2	2					_	
	CO2			2			2	_	
DECEDEN									
REFEREN									
R1:	J.S.R.Jang "N	euro-Fuzzy and So	ft Computing" I	PHI 2003.					

R2:	S. Rajasekaran and G.A. Vijaylakshmi Pai "Neural Networks Fuzzy Logic, and Genetic Algorithms", Prentice Hall of India.						
R3:	Satish Kumar "Neu	ral Networks A Classroom	Approach" Tata McGrawHil	l, 2004.			
R4:	S.N.Sivanandam, S.N.Deepa "Principles of Soft Computing" Second Edition, Wiley Publication.						
R5:	Samir Roy, Udit Chakraborty "Introduction to Soft Computing" Pearson Education India,2013						
R6:	Timothy J.Ross "Fuzzy Logic With Engineering Applications" Wiley, 2010.						
R7:	Fakhreddine O. Karry, Clarence De Silva," Soft Computing and Intelligent Systems Design Theory, Tools and Applications" Pearson 2009.						
R8:	Li Deng and Dong Yu, "Deep Learning Methods and Applications" now Publishers Inc. 2014						
LAB CON	APONENT CONTENTS	5					
1.	Implementation of	Fuzzy Relations (Max-min	Composition).				
2.	Implementation of	Fuzzy Controller (Washing	Machine).				
3.	Implementation of	Unsupervised Learning Alg	orithm.				
4.	Implementation of I	Perceptron Learning Algor	ithm.				
5.	Study of research paper on Soft Computing.						
Theory:	0	Tutorial: 0	Practical:30	Total:30 Hours			

21PCP	07	SEMAN	ITIC WEB TECHNOLOG	βY	L 2	T	P 2	C 3	
COURSE OF	BJECTIVES:				-	v	-	5	
 Student will understand how this technology revolutionizes the World Wide Web and its uses. Ontology languages (RDF, RDF-S and OWL) and technologies (explicit metadata, ontologies, logic, and inference) will be covered. In addition, students will be exposed to; ontology engineering, application scenarios, Semantic Web Query Languages, Description Logic and state of the art Semantic Web applications, such as linked data development. 									
NII	SITES:								
THEORY CO	MPONEN	CONTENTS:							
UNIT I		SEMANTIC WEB	VISION					6	
Transition t	o the Sema	antic Web: Transitior	n Examples-Semantic V	Veb Technologies	- Reco	ommer	nded La	yered	
Architectur	es. Structu	red web documents	: The XML Language: S	Structuring - Name	espace	es - Ad	ldressir	g and	
Querying X	ML Docum	ents - Processing.							
UNIT II		RESOURCE DESC	RIPTION					6	
RDF: RDF Sc Querying in	RDF: RDF Schema-Axiomatic Semantics for RDF and RDF Schema - Direct Inference System for RDF and RDFS- Querying in SPARQL.								
UNIT III		WEB ONTOLOGY	LANGUAGE					6	
OWL Langu Constructin Knowledge	iage: Onto g Ontologi -Semantic '	logy Examples - OV es Manually - Reusi Web Architecture.	VL in OWL - Future E ng Existing Ontologies	xtensions to OW s - Using Semiauto	L. Ont omatic	ology Meth	engine Iods - C	ering:)n-To-	
UNIT IV		LOGIC AND INFE	RENCE					6	
Rules: Mon Syntax - Bro	otonic Rul okered Trad	es- Syntax - Seman de as an Example - M	tics - Representing Fa Ionotonic and Nonmo	amily Relationship notonic Rule Mar	os. No kup.	nmon	otonic	Rules:	
UNIT V		APPLICATIONS						6	
Horizontal I Portal at En	nformation erSearch -	n Products at Elsevie e-Learning - Web Se	r - Data Integration at ervices.	Audi - Skill Finding	gat Sw	iss Life	e - Thinl	(Tank	
Theory:45		Tutorial: 0	Practical: 0			Тс	tal:30	Hours	
COURSE OL	JTCOMES								
At the end	of the cour	se students should b	be able to						
CO1:	Understa	nd the structure of S	Semantic Web technol	ogy					
CO2:	Analyse S	emantic Web techno	ology revolutionizes to	World Wide Web	and i	ts uses	5.		
CO3:	Understa	nd the concepts of i	metadata, semantics o	of knowledge and	resou	urce, o	ntolog	, and	
	their desc	riptions in XML-base	ed syntax and web ont	ology language (C	WL).				
CO4:	Describe l	ogic semantics and i	nference with OWL.						
CO5:	Understa	nd Semantic Web qu	ery languages (SPARC	(L) and ontology ir	n sema	antic w	veb.		

	C	CO/PO MAPPING (1 3-St	L/2/3 indicates stren rong, 2-Moderate, 1	gth of correlation) -Fair			
60	PROGRAMME OUTCOMES (POs)						
cos	PO1	PO2	PO3	PO4	PO5		
CO1			2	2			
CO2		2			2		
CO3	2	2					
CO4	2		2				
CO5			2	2			
REFERENC	CE BOOKS						
R1:	Antoniou G a	nd Van Harmelen F	, "Semantic Web Prii	mer", MIT press, USA,	2008.		
R2:	Daconta, M C Services, and	C, J Obrst L and Smi Knowledge Manag	t K T, "The Semantic ement", Wiley, USA,	: Web: A Guide to the 2003.	Future of XML, Web		
R3:	Davies J, Stud based System	er R and Warren P, s", Wiley, USA, 200	"Semantic Web Tech)6.	nologies: Trends and I	Research in Ontology		
R4:	Ducharme B,	"Learning SPARQL"	, O"Reilly Media, US	A, 2011			
LAB COM	PONENT CONT	ENTS					
1.	Creation of St	ructured web docu	iments using XML.				
2.	Processing of	XML Document					
3.	Creation of O	ntology using OWL	•				
4.	Representing	ontology using XM	L and RDF.				
5.	Querying an (Ontology using SPA	RQL.				
6.	Representatio	on of Monotonic ar	d Non Monotonic Ru	ule Markup.			
7.	Extending on	tology using OWL.					
Theory: 0		Tutorial: 0	Practical:30		Total:30 Hours		

21PCP09	ADVANCES IN STORAGE AREA NETWORKS	L	Т	Р	C				
		2	0	2	3				
COURSE OBJECTIVES									
 To understand Storage Area Networks characteristics and components. To become familiar with the SAN vendors and their products To learn Fibre Channel protocols and how SAN components use them to communicate with each other To become familiar with Cisco MDS 9000 Multilayer Directors and Fabric Switches Thoroughly learn Cisco SAN-OS features. To understand the use of all SAN-OS commands. Practice variations of SANOS features 									
PRE-REQUISITES									
 Computer Netv Cloud Computi THEORY COMPONEI 	vorks ng NT CONTENTS								
UNIT I INTRODUCTION TO INFORMATION STORAGE:									
Virtualization and Cle Disk Drive Compone Application- Requir Architecture of Flash	oud Computing; Data Center Environment – Application- Ho ents - Disk Drive Performance - Direct-Attached Storage ements and Disk Performance -Introduction to Flash Drives- Features of Enterprise Flash Drives -Concept in Pra	ost – Conn e-Storage Drives - octice: VN	ectivity Desigr Compo Iware E	y - Sto n Base onents SXi	rage- d on and 9				
Components of an Intelligent Storage System-Storage Provisioning - Types of Intelligent Storage Systems - Concepts in Practice: EMC Symmetrix and VNX; Data Protection: RAID - RAID Implementation Methods- Software RAID-Hardware RAID-RAID Array Components-RAID Techniques -RAID Levels-RAID 0 -RAID 1- Nested RAID-RAID 3 -RAID 4 -RAID 5 -RAID 6-RAID Impact on Disk Performance - RAID Comparison - Hot Spares ; Understanding SANOS									
UNIT III	STORAGE NETWORKING TECHNOLOGIES				9				
Fibre Channel Storag of FC SAN- Fibre Cha implementation of N	e Area Networks - Fibre Channel: Overview -The SAN and nnel Architecture - FC SAN Topologies- Virtualization in SA IAS- IP-SAN- Content-Addressed Storage - CAS Use cases.	Its Evolut AN- NAS -	ion - C - Comp	ompor onents	ients s and				
UNIT IV	UNIT IV BACKUP, ARCHIVE, AND REPLICATION 9								
Introduction to Business Continuity – Failure Analysis - Backup and Archive- Backup Purpose - Disaster Recovery - Operational Recovery – Archival - Backup Topologies- Backup in NAS Environments - Backup in Virtualized Environments- Local and remote replication									
UNIT V	SECURING AND MANAGING STORAGE INFRASTRUCTU	IRE			9				

Information Security Framework - Storage Security Domains - Security Implementations in Storage Networking- Monitoring the Storage Infrastructure - Storage Infrastructure Management Activities - Storage Infrastructure Management Challenges

Theory:45		Tutorial: 0	Practical: 0	Project: 0	Total: 45 Hours				
COURSE OUTCOMES									
At the end of the course students should be able to									
CO1 :	Implement data storage in cloud environment								
CO2 :	Gain knowledge of RAID and SANOS commands								
CO3 :	Clearly discern the networking technologies for storage								
CO4 :	Analyze the failure condition and recovery of data								
CO5 :	CO5: Understand techniques involved in securing the storage structure								

CO/PO MAPPING (1/2/3 indicates strength of correlation) 3-Strong, 2-Moderate, 1-Fair									
	PROGRAMME OUTCOMES (POs)								
COs	PO1	PO2	PO3	PO4	PO5				
CO1	2		2	2					
CO2		2							
CO3		2			2				
CO4			2						
CO5	2		2	2					
TEXT BOO	KS								
1.	1. EMC Corporation, Information Storage and Management, Wiley.								
REFERENCE BOOKS									
1.	Robert Spalding, "Si 2003.	torage Networks: 1	The Complete Refe	erence", Tata McGra	aw Hill, Osborne,				
2.	Marc Farley, "Buildi	ng Storage Netwo	rks", Tata McGraw	/ Hill ,Osborne, 200	1.				
3.	Meeta Gupta, Stora	ge Area Network F	Fundamentals, Pea	arson Education Lim	iited, 2002.				
LABORAT	DRY CONTENTS								
1.	Installation and exe	cution of Virtual e	nvironment (VMW	/are)					
2.	Execution of SAN O	S Commands and (Cisco MDS 9000 N	X-OS commands					
3.	Applications and Ca	se studies of SAN i	implementation in	educational Institu	itions				
4.	Design and Configu	re a SAN with its co	omponents and fa	brications for an Inc	dian Bank.				

21PCP	10		NATURAL LANGUAGE PROCESSING		L	Т	P	C	
	BIECTIVE	- - C ·				Z	U	Z	3
To introduce the fundamentals of Language processing from the algorithmic views int									
• To	 To discuss various issues those make natural language processing a bard task 								
• To	• To discuss some applications of Natural Language Processing (NLP).								
PRE-REQU	PRE-REOUISITES:								
NIL									
THEORY CO	THEORY COMPONENT CONTENTS:								
UNIT I			INTRODUCTION TO	O NATURAL LANGUA	GE				6
Understand Outline of	ding- Le [.] English S	vels o Syntax	of language analys <.	sis- Syntax, Semantio	cs, Pragmatics. Li	nguist	ic Bac	kgroun	d- An
UNIT II			GRAMMARS						6
Lexicons, I	POS Tag	ging,	Word Senses. Gr	ammars and Parsin	g- Features, Agre	eemer	nt and	Augm	ented
Grammars									
			PARSING AND AM		N				6
									U
Grammars	for Natu	ural L	anguage, Parsing n	nethods and Efficient	t Parsing. Ambigu	ity Re	solutio	on- Stat	istical
Methods. F	Probabili	stic C	ontext Free Gramn	nar.					
UNIT IV			SEMANTIC AND LO	DGICAL FORM					6
Semantics	and Log	gical I	Form: Linking Synt	ax and Semantics A	mbiguity Resoluti	ion- o	ther S	trategi	es for
Semantic I	nterpreta	ation	Scoping and the In	terpretation of Noun	Phrases				1
UNIT V			KNOWLEDGE REP	RESENTATION AND F	REASONING				6
Knowledge Knowledge	Repres	senta rse St	tion and Reasonii tructure- Defining a	ng- Local Discourse Conversational Ager	, Context and F nt. Text Categoriza	Refere ation a	nce- ind Su	Using mmariz	World ation.
Theory:45			Tutorial: 0	Practical: 0			Тс	otal:30	Hours
COURSE O	UTCOME	ES							
At the end	of the co	ourse	students should be	e able to					
CO1:	1: Appreciate the fundamental concepts of Natural Language Processing.								
CO2: Design algorithms for NLP tasks.									
CO3:	Implen	nent a	a rule based system	n to tackle morpholog	gy/syntax of a lang	guage.			
CO4:	Design	a tag	set to be used for	statistical processing	for real-time app	licatio	ns.		
CO5:	Develo	p use	ful systems for lan	guage processing and	d related tasks inv	olving	text p	rocessi	ng.

	(CO/PO MAPPING (1 3-Str	/2/3 indicates stren	gth of correlation) Fair				
	PROGRAMME OLITCOMES (POs)							
COs	PO1	PO2	PO3	PO4	PO5			
CO1	2		2	2				
CO2		2						
CO3		2	2	2	2			
CO4				2	2			
CO5	2		2	2				
REFERENC	CE BOOKS							
R1:	D. Jurafsky ar	nd J. H. Martin, Spee	ch and Language Pr	ocessing, Prentice Hal	l India, 2000			
R2:	James Allen, Natural Language Understanding, 2e, The Benjamin/Cummings Publishing Company Inc., Redwood City, CA.							
R3:	Charniak, Eug	ene, Introduction to	o Artificial intelligen	ce, Addison-Wesley, 1	985			
R4:	Ricardo Baez Wesley,1999.	a-Yates and Berth	nier Ribeiro-Neto,	Modern Information	Retrieval, Addison-			
R5:	U. S. Tiwary Oxford Unive	and Tanveer Siddionsity Press, 2008.	qui, Natural Langua	ge Processing and Ir	formation Retrieval,			
LAB COM	PONENT CONT	ENTS						
1.	Text Classifica	ation						
2.	Text Matchin	g / Similarity						
3.	Sentiment An	alysis						
4.	Speech Recog	gnition						
5.	Chat Bot Deve	elopment						
Theory: 0		Tutorial: 0	Practical:30		Total:30 Hours			

21PC	CP11	SOFTW	ARE DEFINED NETW	ORKS	L	Т	Ρ	С	
					2	0	2	3	
COURSE OBJECTIVES									
• 7	This cours	se introduces softwa	re defined networkir	ng, an emerging par	radigm in	compu	ter		
networking that allows a logically centralized software program to control the behaviour of an									
entire networ									
PRE-REQUISITIE									
NIL									
THEORY	COMPO	NENT CONTENTS							
UNIT I		INTRODUCING SDN						6	
SDN Orig	gins and E	volution – Introducti	on – Why SDN? - Cen	tralized and Distrib	outed Con	trol and	d Data I	Planes	
- The Ge	nesis of S	DN							
UNIT II		SDN ABSTRACTION	S					6	
How SDI	N Works	- The Openflow Prot	ocol - SDN Controlle	rs: Introduction - (General C –	oncepts	s - VM	ware -	
Nicira -	VMware	e/Nicira - OpenFlov	w-Related - Minine	t - NOX/POX -	Trema -	Ryu -	Big S	Switch	
Network	s/Floodlig	ght - Layer 3 Centric	- Plexxi - Cisco OnePl	K					
								6	
	D	PROGRAIVIIVIING SI						6	
Network Programmability - Network Function Virtualization - NetApp Development, Network Slicing									
								6	
SDN in th	ne Data Ce	enter - SDN in Other F	Environments - SDN A	Innlications - SDN I		- The O	nen Ne	etwork	
Operatio	ie Data et 19 System	3				The O	pennie		
operatin	ig System	5							
		SDN'S FUTURE AND	D PERSPECTIVES					6	
SDN Ope	en Source	- SDN Futures - Fina	I Thoughts and Concl	usions					
			U						
Theory:	30	Tutorial: 0	Practical: 0	Project: 0	Total: 3	30 Hour	S		
COURSE	OUTCOM	1ES							
At the er	nd of the	course students show	uld be able to						
CO1 :	CO1 : Differentiate between traditional networks and software defined networks								
CO2 :	: Understand advanced and emerging networking technologies								
CO3 :	: Obtain skills to do advanced networking research and programming								
CO4 :	Learn how to use software programs to perform varying and complex networking tasks								
CO5 :	Expand	upon the knowledge	learned and apply it	to solve real world	l problem	S			

	CO/PO MAPPING (1/2/3 indicates strength of correlation) 3-Strong, 2-Moderate, 1-Fair								
600		PROG	RAMME OUTCON	1ES (POs)					
COS	PO1	PO2	PO3	PO4	PO5				
CO1	2		2						
CO2		2		2					
CO3		2	2						
CO4				2	2				
CO5				2	2				
REFERE	NCE BOOKS								
1.	Software Defined Networks: A Comprehensive Approach by Paul Goransson and Chuck Black,								
	Morgan Kaufmann Publications, 2014								
2.	SDN - Software Defined Networks by Thomas D. Nadeau & Ken Gray, O'Reilly, 2013.								
3	Feamster, Nick, Jenn	ifer Rexford, and I		road to SDN: an ii	ntellectual history of				
0.	programmable netwo	orks." ACM SIGCON	MM Computer Cor	mmunication Review	w 2014.				
4.	Kreutz, Diego, et al. "	Software-defined	networking: A con	nprehensive survey	." Proceedings of the				
	IEEE 103.1, 2015.								
5.	Lantz, Bob, Brandon	Heller, and Nick N	McKeown. "A net	work in a laptop: r	apid prototyping for				
	software-defined net	works." Proceedin	gs of the 9th ACM	1 SIGCOMM Works	hop on Hot Topics in				
	Networks. ACM, 2010).	•						
6.	Monsanto, Christoph	er, et al. "Compos	ing software defir	ned networks." Pres	sented as part of the				
	10th USENIX Sympos	ium on Networked	Systems Design a	ind Implementation	n (NSDI 13). 2013				
7	Nunes Bruno AA et	al "A survey of s	oftware-defined n	etworking. Past or	resent and future of				
/.	nrogrammahle netwo	arks " Communicat	ions Surveys & Tu	torials IFFF 16 2 2	014				
	Programmable netwo		Jons Julveys & Tu	1011013, ILLE 10.3, Z	V17.				
8.	Software Defined Net	tworking with Ope	nFlow By Siamak	Azodolmolky, Packt	Publishing, 2013				
				-					
LAB CO	MPONENT CONTENTS								

1.	Study •	of Amazon elastic file s Scalable file systems	ystem to understand	d the implementat	ion of					
	•	Management of work	kloads							
	Budget estimation									
	•	Security features								
	•	Compliance of standards								
Theory:	: 0		Tutorial: 0	Practical:30	Total:30 Hours					

21PCP12	EMBEDDED COMP	UTING SYSTEMS	L 2	T	P 2	C 3		
COURSE OBJECTIVES:			2	U	2	5		
Explain a gener	ral overview of Embedded Syster	ns						
 Show current s 	tatistics of Embedded Systems							
Examine a com	plete microprocessor-based har	dware system						
 Design, code, c 	compile, and test real-time softw	are						
 Integrate a full 	y functional system including hai	rdware and software						
 Make intelliger 	nt choices between hardware/so	ftware tradeoffs						
PRE-REQUISITES:								
NIL								
THEORY COMPONENT	CONTENTS:							
UNIT I INTI	RODUCTION TO EMBEDDED SYS	TEMS				6		
Embedded systems: Pr	ocessor embedded into a system	n- Embedded hardware units	and d	evice i	in sys	tem-		
Embedded software in	a system- Examples of embedd	ed systems- Design process	in eml	bedde	d syst	tem-		
Formalization of syster	n design- Design process and des	ign examples- Classification	of emb	edded	, d syste	ems-		
skills required for an er	mbedded system designer.							
UNIT II DEV	ICES AND COMMUNICATION BU	ISES FOR DEVICES NETWORI	(6		
IO types and example	e: Serial communication devices	s- Parallel device ports- So	histica	ated i	nterfa	acing		
features in device port	s- Wireless devices- Timer and c	ounting devices- Watchdog	imer-	Real t	ime c	lock-		
Networked embedded	systems- Serial bus communicati	on protocols- Parallel bus de	vice pr	otoco	ls- pai	allel		
communication intern	et using ISA, PCI, PCI-X and adv	, vanced buses- Internet enat	led sy	stems	- netv	work		
protocols- Wireless and	d mobile system protocols.		,					
UNIT III DEV	ICE DRIVERS AND INTERRUPTS	AND SERVICE MECHANISM				6		
Programming-I/O busy	y-wait approach without interr	rupt service mechanism- IS	R con	cept-	Inter	rupt		
sources- Interrupt ser	vicing (Handling) Mechanism- I	Multiple interrupts- Context	and	the p	eriods	s for		
context switching- inte	rrupt latency and deadline- Class	ification of processors interru	ipt ser	vice m	lecha	nism		
from Context-saving ar	ngle- Direct memory access- Devi	ice driver programming.						
INTI	ER PROCESS COMMUNICATION	AND SYNCHRONIZATION OF	PROC	ESSES				
	EADS AND TASKS			,		6		
Multiple processes in a	in application: Multiple threads in	n an application- Tasks- Task	states	- Task	and D)ata-		
Clear-cut distinction be	etween functions. ISRS and tasks	by their characteristics- con	cept a	nd ser	napho	ores-		
Shared data- Inter-pr	ocess communication- Signal f	unction- Semaphore functi	ons- N	/lessag	ze Oi	Jeue		
functions- Mailbox fun	ctions- Pipe functions- Socket fu	actions- RPC functions.						
UNIT V REA	L-TIME OPERATING SYSTEMS					6		
OS Services: Process m	anagement- Timer functions- Me	mory management: Device-	file and	d IO sı	ubsyst	ems		
management- Interrup	ot routines in RTOS environment	and handling of interrupt s	ource	calls-	Real-	time		
operating systems- Ba	asic design using an RTOS, RTO	S task scheduling models-	interru	upt lat	tency	and		
response of the tasks	as performance metrics- OS see	curity issues. Introduction to	o emb	edded	soft	ware		
development process a	and tools- Host and target maching	nes- Linking and location sof	tware.					
Theory:30	Tutorial: 0	Practical: 0		Total	:30 H	ours		
COURSE OUTCOMES:		····						
At the end of the course students should be able to.								
CO1: Distinguish the characteristics of embedded computer systems.								

CO2:	Examine the various vulnerabilities of embedded computer systems.
CO3:	Design an embedded system.
CO4:	Design and develop modules using RTOS.
CO5:	Implement RPC, threads and tasks.

	CO/PO MAPPING (1/2/3 indicates strength of correlation) 3-Strong, 2-Moderate, 1-Fair									
	60-		PROGRAMME OUTCOMES (POs)							
	COs	PO1	PO2	PO3	PO4	PO5				
	CO1	2		2						
	CO2		2		2					
	CO3		2	2						
	CO4				2	2				
	CO5				2	2				
REFEREN	CE BOOKS:									
R1:	Raj Kamal, "Embedded Systems: Architecture, Programming, and Design" 2nd edition, Tata									
	McGraw hill-2013.									
R2:	Marilyn Wol 3rd edition, I	f, "Computer Elsevier-2014.	as Component	s, Principles of	Embedded Co	mputing Syster	n Design"			
LAB CON	IPONENT CON	ITENTS:								
1.	Study on how	v to secure en	nbedded syster	m in real time e	environment.					
2.	Study on web	o connectivity	and security in	embedded sy	stems.					
3.	Study on inte	er process con	nmunication.							
Theory: 0	ory: 0 Tutorial: 0 Practical:30 Total:30						:30 Hours			

21PCP13	APPLIED GRAPH THEORY	L	Т	Р	С						
		2	0	2	3						
COURSE OBJE	CTIVES										
This course wi	ll enable students to										
• •	Have knowledge of the basic concepts of graph										
• •	Have a knowledge classes of graphs and its algorithm										
• •	Be exposed to constrained and unconstrained optimization technic	ues									
PRF-REOUISIT	FS I I I I I I I I I I I I I I I I I I I										
• Data s	Data structures										
 Design and analysis of Algorithm 											
e Desigi											
THEORY COM	PONENT CONTENTS										
					9						
Discovery of a	ranhs – Definitions – Sub graphs - Isomorphic graphs - Matrix repres	entati	ons of	gran	hs -						
Degree of a ve	ertex - Directed walks, paths and cycles - Connectivity in digraphs - E	uleriar	n and	Hamil	ton						
digraphs - Eul	erian digraphs - Hamilton digraphs - Special graphs - Complements	- Larg	er gra	phs fr	om						
smaller graph	s – Union – Sum - Cartesian Product - Composition - Graphic sequence	ces - C	Graph	theor	etic						
model of the l	AN problem - Havel-Hakimi criterion - Realization of a graphic sequence	æ.									
UNIT II	CONNECTED GRAPHS AND SHORTEST PATHS				9						
Walks – trails	- paths - cycles - Connected graphs - Distance - Cut-vertices and	cut-ec	lges –	Block	(s –						
Connectivity –	Weighted graphs and shortest paths – Weighted graphs – Dijkstra's sh	ortest	path a	Igorit	hm						
– Floyd – War	shall shortest path algorithm.				_						
UNIT III	TREES				9						
Definitions an	d characterizations – Number of trees –Cayley's formula – Kircho-m	atrix-t	ree th	eorer	n –						
Minimum spa	nning trees – Kruskal's algorithm – Prim's algorithm – Special classes	of gra	phs –	Bipar	tite						
Graphs – Line	Graphs – Chordal Graphs – Eulerian Graphs – Fleury's algorithm – Chine	ese Po	stman	prob	em						
– Hamilton Gr	aphs – Introduction – Necessary conditions and sufficient conditions.										
	INDEPENDENT SETS COVERINGS AND MATCHINGS				9						
Lature du esti e a	Independent and an interaction of the state										
Theorem K"	independent sets and coverings – basic equations – Matching's in bip	artice	graph	S — Ha	an s						
Theorem – K	brig's Theorem – Perfect matching's in graphs – Greedy and approxima	ation a	igoriti	ims.							
	VERIEX COLORINGS				9						
Desis definitio	na Clinua and chromatic number. Musicali's theorem. Cready		مم مام	م بالله ا							
Basic definition	ns – Cliques and chromatic number – Mycleiski's theorem – Greedy		ng aig		n –						
theorem Cla	ss 1 and Class 2 graphs Edge coloring of hipartite graphs Class 2	aranh	– Gup		ion						
and Class 2 gr	ss-1 and Class-2 graphs – Euge-coloring of Dipartite graphs – Class-2 g	graphs	5 — пај	os un	1011						
Theory: 45	apris – A scheduling problem and equitable edge-coloring.	<u> </u>									
		3									
At the end of	he course students should be able to										
	Inderstand the basics of software architecture										
CO2 :	Critically analyse the quality measures of architecture										

CO3 :	Understand architecture life cycle for a given project								
CO4 :	Design so	ftware with creationa	al and structure patte	rns					
CO5 :	Design so	ftware with behaviou	ıral patterns						
TEXT BO	OKS								
T1	Erich Gamma, Reusable Obje	Richard Helm, Ralph . ct-Oriented Software	Johnson, and John Vli , Addison – Wesley, 1	issides : Design Pa .994	tterns: Elements of				
T2	Len Bass, Paul	Clements, Rick Kazma	an, Software Architec	ture in Practice (2	nd Ed.), Pearson				
	CO/PO MAPPING (1/2/3 indicates strength of correlation) 3-Strong, 2-Moderate, 1-Fair								
		PRO	OGRAMME OUTCOM	ES (POs)					
COs	PO1	PO2	PO3	PO4	PO5				
CO1	2		2						
CO2		2		2					
CO3		2	2						
C04 C05									
				L					
REFEREN	CE BOOKS								
R1	Clark J. and Ho	lton D.A, "A First Loo	k at Graph Theory", A	Allied Publishers, 1	995.				
R2	DB.West: Intr	oduction to Graph Th	neory,Prentice-Hall of	India/Pearson, 20	009				
LAB CON	IPONENT CONT	ENTS							
1.	Implement Dijl	kstra's Algorithm.							
2.	Implement Flo	yd Warshall's Algorit	hm.						
3.	Implement Bel	Iman Ford's Algorithr	n.						
4.	Konigs theorer	n implementation							
5.	Implement pri	ms and kruskals algor	ithm						
6.	Implement Chi	nese postman proble	em using Hamilton gra	aph					
1.	Brooks theore	n implementation							
8.	Mycielski's the	orem implementatio	n						
Theory:0		Tutorial:0	Practical:30	Project:0	Total:30 periods				

21PCP14		SOFTWARE A	RCHITECTURE AN	D DESIGN PATTE	RNS	I	т	Р	C
211 01 14				DESIGNTATIE		2	0	2	2
COURSE OBJ	ECTIVES					-	U	-	
This course w	vill enable	e students to							
• U	Inderstar	nd the software	e architecture con	ncept					
• L	earn the	different quali	ty measures of a g	good software ar	chitectur	e			
• 1	Inderstar	nd the architec	tural life cycle			•			
• 10	earn the	various design	patterns used in :	software archite	cture				
PRF-REQUISITES									
Nil									
THEORY COM	IPONEN	T CONTENTS							
UNIT I		INTRODUCTI	ON TO SOFTWAR	E ARCHITECTUR	E				9
Basics of soft	ware arcl	nitecture – Arch	nitectural structur	es – views – patt	erns – The	featu	res of	good	software
architecture									
									0
		QUALITYAT	RIDUTES						9
Understandin	σOuality	v Attributes — A	Availability — Inter	ronerahility – mo	difiability	/ Dor	form	ance -	- Security
– Testability –	- Usahilit	y - Tactics and	natterns	operability – mo	unability	- r ei	101111	ance	Security
	OSUBIII		RE IN THE LIFE CY	/CLF					9
Architecture	in agile	projects – re	auirements – de	signing and doc	umenting	g soft	ware	archit	ecture –
implementati	ion – test	ting – reconstru	uction – conforma	ance – evaluation	n – manag	gemen	it and	govei	rnance
		CREATIONAL	AND STRUCTURA	AL PATTERNS					9
Abstract fact	ory – bu	ilder – factory	method – proto	type – singleton	– adapte	er – b	ridge	– con	nposite –
decorator – fa	, acade – f	lyweight – pro	xy				Ū		•
UNIT V		BEHAVIOUR	AL PATTERNS						9
Chain of resp	onsibilit	y – command	– interpreter – ite	erator – mediato	or patterr	ns — ca	ase st	udy –	design a
document ed	itor								
Theory: 45		Tutorial: 0	Practical: 0 P	Project: 0 To	otal: 45 P	eriods	5		
COURSE OUT	COMES								
At the end of	the cour	se students sh	ould be able to						
CO1 :	Unders	tand the basics	ot software archi	itecture					
CO2 :	Critically analyse the quality measures of architecture								
CO3 :	Understand architecture life cycle for a given project								
CO4 :	Design	software with	creational and stru	ucture patterns					
CO5 :	Design	software with l	behavioural patte	rns					

	CO/PO MAPPING (1/2/3 indicates strength of correlation)									
		3-St	rong, 2-Moderate, 1	Fair						
COs			PROGRAMME OUTC	OMES (POs)						
	PO1	PO2	PO3	PO4	PO5					
CO1	2	2								
CO2			2	2						
CO3			2	2						
CO4		2		2	2					
CO5				2	2					
TEXT BO	OKS									
T1	Erich Gamma,	, Richard Helm, Ralp	h Johnson, and Johr	NVIissides : Desig	n Patterns: Elements of					
	Reusable Obje	ect-Oriented Softwa	re, Addison – Wesle	y, 1994						
T2	Len Bass, Pau	l Clements, Rick Kaz	man, Software Arch	itecture in Practi	ce (2nd Ed.), Pearson					
REFEREN										
R1	Eric J. Braude	, Software Design, J	ohn Wiley and Sons							
	Mary Shaw & David Garlan, Software Architecture – Perspectives on an emerging discipline,									
R2	Pearson, 1996	5								
LAB CON	/IPONENT CON	TENTS								
1.	Java class imp	lementation with si	ngleton pattern							
2.	Abstract facto	ory and factory meth	nod implementation							
3.	Adapter patte	ern implementation								
4.	Decorator pat	tern implementatio	n							
5.	Facade patter	n implementation								
6.	Implementati	on of chain of respo	nsibility							
7.	Iterator patte	rn implementation								
8.	Mediator patt	tern implementation	า							
Theory:)	Tutorial:0	Practical:30	Project:0	Total:30 periods					

21PCP	215		NC	OSQL DATABASE		L	Т	P	C
COURSE OBJ	IECTIVES:					2	U	2	3
Dem	onstrate	compe	etency in designing	g NoSQL database manageme	ent svste	ms			
• Dem	• Demonstrate competency in describing how NoSQL databases differ from relational databases.								
• Dem	onstrate	compe	, etency in selecting	a particular NoSQL database	for spec	cific us	se case	es.	
PRE-REQUIS	ITES:		, .	·	<u> </u>				
NIL									
THEORY CON	MPONEN	T CON	TENTS						
UNIT I	INTE	RODUC	TION						6
Introduction	to Datab	ases -	Three Database R	evolutions - Different Databa	ses for D	Differe	nt Rec	quiren	nents
- Variety of N	loSQL Dat	abase	s : Data Managem	ent with Distributed Database	s - ACID) and E	BASE -	Four 1	Fypes
of NoSQL Da	tabases :	Key-V	alue Pair Databas	es, Document Databases, Col	umn Fa	mily D	ataba	ses, G	Graph
Databases						-			
UNIT II	KEY-	VALU	E DATABASES						6
Introduction	to Key-V	alue D	atabases : From	Arrays to Key-Value Database	es - Esse	ential	Featu	res of	Key-
Value Databa	ases - Key	s: Mor	e Than Meaningle	ss Identifiers - Values: Storing	any dat	a - Key	/-Valu	e Data	abase
Terminology	': Key-Va	lue Da	atabase Data Mo	deling Terms - Key-Value Ar	chitectu	ire Te	rms -	Key-'	√alue
Implementat	tion Term	ns - De	esigning for Key-\	/alue Databases : Key Desigr	n and Pa	artitio	ning -	Desi	gning
Structured V	'alues - Lir	nitatic	ons of Key-Value D	atabases - Design Patterns fo	or Key-V	alue D)ataba	ses	
UNIT III	DOC		NT DATABASES						6
Introduction	to Docur	nent D	Databases : Basic	Operations on Document Dat	abases	- Doc	umen	t Data	abase
Terminology	: Docume	ent and	d Collection Terms	5 - Types of Partitions - Data N	/lodeling	g and (Query	Proce	ssing
- Designing	for Docur	nent D	Databases : Norm	alization, denormalization an	d searcl	h for	prope	r bala	nce -
Planning for	Mutable	Docun	nents - The Goldilo	ock zone of Indexes - Modelin	g Comm	ion Re	lation	S	1
UNIT IV	COL	UMN I	FAMILY DATABAS	ES					6
Introduction	to Colur	nn Fa	mily Databases :	Differences and Similarities	to Key	-Value	e and	Docu	ment
Databases - A	Architectu	ires Us	ed in Column Fam	ily Databases - Column Famil	y Databa	ase Te	rmino	logy :	Basic
Components	s of Colu	mn Fa	mily Databases -	Structures and Processes:	Implem	enting	; Colu	mn F	amily
Databases -	Processe	s and I	Protocols - Design	ing for Column Family Databa	ases : G	uidelir	nes foi	r Desi	gning
Tables - Guio	delines for	r Index	ting						
UNIT V	GRA	PH DA	TABASES AND TH	IE DATABASE LANDSCAPE					6
Introduction	to Graph	Datab	ases: What Is a G	raph - Graphs and Network N	lodeling	- Adv	antage	es of G	iraph
Databases -	Graph Da	tabas	e Terminology : E	lements of Graphs - Operati	ons on	Graph	is - Pr	operti	es of
Graphs and I	Nodes - Ty	pes of	f Graphs - Designi	ng for Graph Databases : Que	erving a G	Graph	- Tips	sand	Traps
of Graph Dat	tabase De	sign -	Choosing a NoSQI	Database					
Theory:30			Tutorial: 0	Practical: 0			Tota	1:30 F	lours
COURSE OU	TCOMES:								
At the end of	f the cour	se stu	dents should be a	ble to,					
CO1:	Underst	and co	ompetency in desi	gning NoSQL database manag	gement	systen	ns		
<u> </u>	Understand the Key-Value Databases								
CO3:	Understand the Document Databases								
CO4:	Underst	and th	e Column Family	and Graph Databases					
CO5:	Identifie	ed how	to choose a NoS	LL Database for our application	on				

		Ο/ΡΟ ΜΑΡΡΙΝ	G (1/2/3 indic:	ates strength of	f correlatio	n)				
		3	B-Strong, 2-Mo	derate, 1-Fair		,				
	60-		PROGRAMME OUTCOMES (POs)							
	COS	PO1	PO2	PO3	PO4	PO5				
	CO1	2	2							
	CO2			2	2					
	CO3			2	2					
	CO4		2		2	2				
	CO5				2	2				
REFEREN	CE BOOKS:									
R1∙	Dan Sulli	Dan Sullivan. NoSQL for Mere Mortals. Addison-Wesley Professional. 2015. ISBN:								
	01340232	0134023218								
R2:	Guy Harris	son. Next-Gene	ration Databas	es. Apress. 2016	5. ISBN: 978	31484213292				
LAB CON	IPONENT CON	FENTS:								
1.	Key-Value	Databases for N	Mobile Applicat	ion Configurati	on					
2.	Document	Database for C	ustomer Manif	ests						
3.	Column Fa	mily Database f	for Customer D	ata Analysis						
4.	Graph Dat	abases for Opti	mizing Transpo	rtation Routes						
Theory: ()	Tutorial:	0	Practical:30		Total:	30 Hours			

2100	21PCP16 INFORMATION SECURITY AND CYBER FORENSICS	Р	С							
2110	.1 10		2	0	2	3				
COURSE	OBJECTIV	ES:								
• L	Inderstan	d the classic & public key cryptosystems, hash functions.								
• L	 Learn and understand the next generation Internet protocol. 									
• A	Acquire fu	ndamental knowledge on the concepts of securing operating s	ystems	•						
• B	• Become knowledgeable in various methods and protocols to maintain E-mail security, and web									
security.										
• P	 Plan and prepare for all stages of a Cyber & Forensic Incidents and Network Forensics. 									
PRE-REQUISITES:										
NIL										
THEORY	COMPON	ENT CONTENTS								
UNIT I	INTE	ODUCTION				6				
Services,	Mechanis	ms and attacks-the OSI security architecture-Network security	model	classi	cal Enc	ryption				
techniqu	es: Data	Encryption Standard- Block cipher principles, Advanced E	ncryptio	on Sta	ndard	(AES)-				
Principles	s of public	key cryptosystems- The RSA algorithm- Key management- Di	fie Hel	lman k	key exc	hange-				
Authenti	cation fu	nctions-Message authentication codes- Hash functions- Hash	ı Algor	ithms	(Secur	e Hash				
Algorithn	n).									
UNIT II	NEX	GENERATION INTERNET PROTOCOL				6				
Introduct	tion to IPv	6 – IPv6 Advanced Features –V4 and V6 header comparison – V	/6 Addr	ess ty	oes –St	ateless				
auto con	figuration	 – IPv6 routing protocols – IPv4-V6 Tunnelling and Translation 	Techni	ques.						
UNIT III	OPE	RATING SYSTEM SECURITY				6				
Security i	n Windov	vs and LINUX/Unix: Protection system- authorization- security	analysis	and v	ulnera	bilities-				
The secu	rity kerne	 Secure communications processor – Retrofitting security into 	opera	ting sy	stems.					
UNIT IV	WEB	SECURITY SSL/TLS				6				
Basic Pro	tocol Plai	and prepare for all stages of a Forensic Incidents and Netwo	rk Fore	ensic se	ol- con	nputing				
the keys-	 client au 	thentication- PKI as deployed by SSL Attacks fixed in v3-Expc	rtabilit	y- Enc	oding-	Secure				
Electroni	c Transac	tion (SET)- Kerberos- Security Services for E-mail-attacks: E-	mail- P	retty (Good F	'rivacy-				
S/MIME.										
UNIT V	CYB	R & FORENSICS				6				
Cyber Se	curity and	its Problem- Intervention Strategies: Redundancy- Diversity and	nd Auta	rchy- (Cyber s	ecurity				
in Society	/- Security	in cyber laws. Forensics Incident - Incident Response Methodo	ology- F	orensi	c dupli	cation-				
Forensic	Analysis	of File System. Network Forensics: Network Protocols- Ema	il Traci	ng- In	ternet	Fraud-				
Ethical Is	sues: Cyb	ercrime.								
Theory:3	0	Tutorial:0 Practical:0		Т	otal:30	Hours				
COURSE	OUTCOM	ES:								
At the en	d of the c	ourse students should be able to,								
CO1:	Underst	and the classic & public key cryptosystems, hash functions.								
CO2:	CO2: Identify & compare the next generation Internet protocol.									
CO3:	Able to apply the security concepts on operating systems									
CO4:	Choose	various methods and protocols to maintain E-mail security, an	d web s	ecurit	у.					
CO5:	Illustrate	e for all the stages of Cyber & Forensic Incidents and Network	Forensi	cs.						

	(CO/PO MAPPIN	G (S/M/W ii	ndicates strength	of corre	lation)]	
		:	PROG	RAMME OUTCOM	ES (POs	:)		-	
	COs	PO1	PO2	PO3	P	, 204	PO5	-	
	CO1	2	2						
	CO2			2		2			
	CO3			2		2			
	CO4		2			2	2		
	CO5					2	2		
REFERE	ENCE BOOKS:								
R1:	William Stallin ISBN10: 0133	ngs, "Cryptograj 354695.	ohy and Ne	twork Security", F	Pearson	Educatio	on, 6th Editi	on, 2013,	
R2:	Kevin Mandia 2006.	a, Chris Prosise,	"Incident	Response and co	mputer	forensi	cs", Tata Mc	Graw-Hill,	
R3:	Trent Jaeger,	Operating Syste	ms Security,	, Morgan & Claypo	ol Publi	shers, 20	800		
R4:	Michael J.Palr	ner, Guide to Op	perating Sys	tems Security, Tho	omson/C	Course T	echnology, 2	.004.	
R5:	Jonathan Rose	enoer,"Cyber La	w: The law o	of the Internet", Sp	oringer-'	Verlag, 1	1997.		
LAB CC	MPONENT CON	FENTS:							
1.	Study on Cybe	r Forensics in a	Military Ope	erations Perspectiv	/e.				
2.	Study on Cyber Forensics in a health care field.								
Theory	v:0	Tutorial:0		Practical:30			Tota	:30 Hours	

21CS111

PROJECT I

L T P C 0 0 6 3

Course Objectives

• To enable learners of Engineering and Technology develop their basic communication skills in English.

• To emphasize specially the development of speaking skills amongst learners of Engineering and Technology.

• To ensure that learners use the electronic media such as internet and supplement the learning materials used in the classroom.

• To inculcate the habit of reading and writing leading to effective and efficient communication.

Course Outcomes

At the end of the course, learners will be able to

CO1 identify technically and economically feasible problems of social relevance

CO2 plan and build the project team with assigned responsibilities

CO3 identify and survey the relevant literature for getting exposed to related solutions

CO4 analyse, design and develop adaptable and reusable solutions of minimal complexity by using modern tools

CO5 implement and test solutions to trace against the user requirements

CO6 deploy and support the solutions for better manageability and provide scope of improvability

Cours	Course Articulation Matrix : 3 High, 2 Medium, 3 Low														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1		2	2	2	2	2	2	1	1	1	1
CO2	3	3	3	3	2	2	2	2	2	2	2	1	2	2	2
CO3	3	3	3	3	2	2	2	2	2	2	2	1	2	2	2
CO4	3	3	3	3	2	2	2	2	2	2	2	1	2	2	2
CO5	3	3	3	3	2	2	2	2	2	2	2	1	2	2	2
CO6	3	3	3	3	2	2	2	2	2	2	2	1	2	2	2

The students are assigned project work related to product / process development, solution to the technical problems in industry and current research at national and international level. The student is required to submit a report at the end of semester based on the findings. The evaluation is made as per the Regulations of University.

		L	Т	Ρ	С
21CS211	PROJECT I I				
		0	0	6	3

Course Objectives

• To enable learners of Engineering and Technology develop their basic communication skills in English.

• To emphasize specially the development of speaking skills amongst learners of Engineering and Technology.

• To ensure that learners use the electronic media such as internet and supplement the learning materials used in the classroom.

• To inculcate the habit of reading and writing leading to effective and efficient communication.

Course Outcomes

At the end of the course, learners will be able to

CO1 identify technically and economically feasible problems of social relevance

CO2 plan and build the project team with assigned responsibilities

CO3 identify and survey the relevant literature for getting exposed to related solutions

CO4 analyse, design and develop adaptable and reusable solutions of minimal complexity by using modern tools

CO5 implement and test solutions to trace against the user requirements

CO6 deploy and support the solutions for better manageability and provide scope of improvability

Cours	Course Articulation Matrix : 3 High, 2 Medium, 3 Low														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1		2	2	2	2	2	2	1	1	1	1
CO2	3	3	3	3	2	2	2	2	2	2	2	1	2	2	2
CO3	3	3	3	3	2	2	2	2	2	2	2	1	2	2	2
CO4	3	3	3	3	2	2	2	2	2	2	2	1	2	2	2
CO5	3	3	3	3	2	2	2	2	2	2	2	1	2	2	2
CO6	3	3	3	3	2	2	2	2	2	2	2	1	2	2	2

The students are assigned project work related to product / process development, solution to the technical problems in industry and current research at national and international level. The student is required to submit a report at the end of semester based on the findings. The evaluation is made as per the Regulations of University.

21CS311	Dissertation-I	L	Т	Ρ	С
		0	0	12	6

Course Objectives

- To enable learners of Engineering and Technology develop their basic communication skills in English.
- To emphasize specially the development of speaking skills amongst learners of Engineering and Technology.

• To ensure that learners use the electronic media such as internet and supplement the learning materials used in the classroom.

• To inculcate the habit of reading and writing leading to effective and efficient communication.

Course Outcomes

At the end of the course, learners will be able to

CO1 identify technically and economically feasible problems of social relevance

CO2 plan and build the project team with assigned responsibilities

CO3 identify and survey the relevant literature for getting exposed to related solutions

CO4 analyse, design and develop adaptable and reusable solutions of minimal complexity by using modern tools

CO5 implement and test solutions to trace against the user requirements

CO6 deploy and support the solutions for better manageability and provide scope of improvability

Cours	Course Articulation Matrix : 3 High, 2 Medium, 3 Low														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1		2	2	2	2	2	2	1	1	1	1
CO2	3	3	3	3	2	2	2	2	2	2	2	1	2	2	2
CO3	3	3	3	3	2	2	2	2	2	2	2	1	2	2	2
CO4	3	3	3	3	2	2	2	2	2	2	2	1	2	2	2
CO5	3	3	3	3	2	2	2	2	2	2	2	1	2	2	2
CO6	3	3	3	3	2	2	2	2	2	2	2	1	2	2	2

The students are assigned project work related to product / process development, solution to the technical problems in industry and current research at national and international level. The student is

required to submit a report at the end of semester based on the findings. The evaluation is made as per the Regulations of University.

21CS411	DISSERTATION-II	L	Т	Ρ	С
		0	0	24	12

Course Objectives

• To enable learners of Engineering and Technology develop their basic communication skills in English.

• To emphasize specially the development of speaking skills amongst learners of Engineering and Technology.

• To ensure that learners use the electronic media such as internet and supplement the learning materials used in the classroom.

• To inculcate the habit of reading and writing leading to effective and efficient communication.

Course Outcomes

At the end of the course, learners will be able to

CO1 identify technically and economically feasible problems of social relevance

CO2 plan and build the project team with assigned responsibilities

CO3 identify and survey the relevant literature for getting exposed to related solutions

CO4 analyse, design and develop adaptable and reusable solutions of minimal complexity by using modern tools

CO5 implement and test solutions to trace against the user requirements

CO6 deploy and support the solutions for better manageability and provide scope of improvability

Cours	Course Articulation Matrix : 3 High, 2 Medium, 3 Low														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1		2	2	2	2	2	2	1	1	1	1
CO2	3	3	3	3	2	2	2	2	2	2	2	1	2	2	2
CO3	3	3	3	3	2	2	2	2	2	2	2	1	2	2	2
CO4	3	3	3	3	2	2	2	2	2	2	2	1	2	2	2

CO5	3	3	3	3	2	2	2	2	2	2	2	1	2	2	2
CO6	3	3	3	3	2	2	2	2	2	2	2	1	2	2	2